Yang-Mills Replacement

Yakov Berchenko-Kogan

Massachusetts Institute of Technology

14 November, 2015

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

- By locally replacing f with a harmonic function, we get a global harmonic function in the limit.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

- By locally replacing f with a harmonic function, we get a global harmonic function in the limit.
- Colding and Minicozzi (2008) locally replace maps $u: \Sigma^{2} \rightarrow M$ with harmonic maps, with bounds.

Schwarz Alternating Method

Example

Let $f:[0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

- By locally replacing f with a harmonic function, we get a global harmonic function in the limit.
- Colding and Minicozzi (2008) locally replace maps $u: \Sigma^{2} \rightarrow M$ with harmonic maps, with bounds.
- I showed that one can similarly locally replace connections on 4-manifolds with Yang-Mills connections, with bounds.

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
- They construct a sweep-out of the 3 -sphere by immersed 2 -spheres and "tighten" each 2 -sphere using harmonic replacement.

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
- They construct a sweep-out of the 3 -sphere by immersed 2 -spheres and "tighten" each 2 -sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
- They construct a sweep-out of the 3 -sphere by immersed 2 -spheres and "tighten" each 2 -sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
- Taubes, Stable Topology (1989).

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
- They construct a sweep-out of the 3 -sphere by immersed 2 -spheres and "tighten" each 2 -sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
- Taubes, Stable Topology (1989).
- Donaldson invariants.

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
- They construct a sweep-out of the 3 -sphere by immersed 2 -spheres and "tighten" each 2 -sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
- Taubes, Stable Topology (1989).
- Donaldson invariants.
- Perform Yang-Mills replacement on connections in a compact family representing a homotopy or homology class.

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
- They construct a sweep-out of the 3 -sphere by immersed 2 -spheres and "tighten" each 2 -sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
- Taubes, Stable Topology (1989).
- Donaldson invariants.
- Perform Yang-Mills replacement on connections in a compact family representing a homotopy or homology class.
- Yang-Mills replacement has parallels with Yang-Mills gradient flow.

Applications

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
- They construct a sweep-out of the 3 -sphere by immersed 2 -spheres and "tighten" each 2 -sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
- Taubes, Stable Topology (1989).
- Donaldson invariants.
- Perform Yang-Mills replacement on connections in a compact family representing a homotopy or homology class.
- Yang-Mills replacement has parallels with Yang-Mills gradient flow.
- Ability to choose balls gives more control.

Harmonic Maps and Yang-Mills Connections

Harmonic maps
Yang-Mills connections

Harmonic Maps and Yang-Mills Connections

$$
\begin{aligned}
& \text { Harmonic maps } \\
& u: \Sigma \rightarrow M \subseteq \mathbb{R}^{N}
\end{aligned}
$$

Yang-Mills connections
Connection A on a principal G-bundle $P \rightarrow X$

Harmonic Maps and Yang-Mills Connections

Harmonic maps

$$
u: \Sigma \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form on Σ.

Yang-Mills connections
Connection A on a principal G-bundle $P \rightarrow X$

Locally, $A=d+a, a$ is a \mathfrak{g}-valued 1 -form on X.

Harmonic Maps and Yang-Mills Connections

Harmonic maps

$$
u: \Sigma \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form on

$$
\Sigma
$$

$d u$ is an \mathbb{R}^{N}-valued 1-form.

Yang-Mills connections
Connection A on a principal G-bundle $P \rightarrow X$

Locally, $A=d+a, a$ is a \mathfrak{g}-valued 1-form on X. $F_{A}=d a+\frac{1}{2}[a \wedge a]$ is a \mathfrak{g}-valued 2-form.

Harmonic Maps and Yang-Mills Connections

Harmonic maps

$$
u: \Sigma \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form on

$$
\Sigma
$$

$d u$ is an \mathbb{R}^{N}-valued 1-form.

$$
\text { Energy }=\frac{1}{2} \int_{\Sigma}|d u|^{2}
$$

Yang-Mills connections
Connection A on a principal G-bundle $P \rightarrow X$

Locally, $A=d+a, a$ is a \mathfrak{g}-valued 1-form on X.
$F_{A}=d a+\frac{1}{2}[a \wedge a]$ is a \mathfrak{g}-valued 2-form.
Energy $=\frac{1}{2} \int_{X}\left|F_{A}\right|^{2}$

Harmonic Maps and Yang-Mills Connections

Harmonic maps

$$
u: \Sigma \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form on

$$
\Sigma
$$

$d u$ is an \mathbb{R}^{N}-valued 1-form.

$$
\text { Energy }=\frac{1}{2} \int_{\Sigma}|d u|^{2}
$$

Invariant under conformal change of metric if $\operatorname{dim} \Sigma=2$

Yang-Mills connections
Connection A on a principal G-bundle $P \rightarrow X$

Locally, $A=d+a, a$ is a \mathfrak{g}-valued 1-form on X.

$$
\begin{gathered}
F_{A}=d a+\frac{1}{2}[a \wedge a] \text { is a } \\
\mathfrak{g} \text {-valued 2-form. }
\end{gathered}
$$

Energy $=\frac{1}{2} \int_{X}\left|F_{A}\right|^{2}$
Invariant under conformal change of metric if $\operatorname{dim} X=4$

Harmonic Maps and Yang-Mills Connections

Harmonic maps

$$
u: \Sigma \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form on

$$
\Sigma
$$

$d u$ is an \mathbb{R}^{N}-valued 1-form.

$$
\text { Energy }=\frac{1}{2} \int_{\Sigma}|d u|^{2}
$$

Invariant under conformal change of metric if $\operatorname{dim} \Sigma=2$

$$
(\Delta u)^{\top}=\left(d^{*} d u\right)^{\top}=0
$$

Yang-Mills connections
Connection A on a principal G-bundle $P \rightarrow X$

Locally, $A=d+a, a$ is a \mathfrak{g}-valued 1 -form on X.

$$
\begin{gathered}
F_{A}=d a+\frac{1}{2}[a \wedge a] \text { is a } \\
\mathfrak{g} \text {-valued 2-form. }
\end{gathered}
$$

Energy $=\frac{1}{2} \int_{X}\left|F_{A}\right|^{2}$
Invariant under conformal change of metric if $\operatorname{dim} X=4$

$$
d_{A}^{*} F_{A}=0
$$

The Dirichlet Problem

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.

The Dirichlet Problem

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- On B^{4}, for "small" boundary data A_{∂} on ∂B^{4}, we must solve:

$$
\begin{aligned}
d_{A}^{*} F_{A} & =0 & & \text { on } B^{4} \\
i^{*} A & =A_{\partial} & & \text { on } \partial B^{4}
\end{aligned}
$$

The Dirichlet Problem

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- On B^{4}, for "small" boundary data A_{∂} on ∂B^{4}, we must solve:

$$
\begin{aligned}
d_{A}^{*} F_{A} & =0 & & \text { on } B^{4} \\
i^{*} A & =A_{\partial} & & \text { on } \partial B^{4}
\end{aligned}
$$

- Solved by Marini (1992) for smooth boundary values.

The Dirichlet Problem

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- On B^{4}, for "small" boundary data A_{∂} on ∂B^{4}, we must solve:

$$
\begin{aligned}
d_{A}^{*} F_{A} & =0 & & \text { on } B^{4} \\
i^{*} A & =A_{\partial} & & \text { on } \partial B^{4}
\end{aligned}
$$

- Solved by Marini (1992) for smooth boundary values.

The Dirichlet Problem

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- On B^{4}, for "small" boundary data A_{∂} on ∂B^{4}, we must solve:

$$
\begin{aligned}
d_{A}^{*} F_{A} & =0 & & \text { on } B^{4} \\
i^{*} A & =A_{\partial} & & \text { on } \partial B^{4}
\end{aligned}
$$

- Solved by Marini (1992) for smooth boundary values.

The Dirichlet Problem

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- On B^{4}, for "small" boundary data A_{∂} on ∂B^{4}, we must solve:

$$
\begin{aligned}
d_{A}^{*} F_{A} & =0 & & \text { on } B^{4} \\
i^{*} A & =A_{\partial} & & \text { on } \partial B^{4}
\end{aligned}
$$

- Solved by Marini (1992) for smooth boundary values.

- Our boundary values are $L_{1 / 2}^{2}\left(\partial B^{4}\right)$, and solutions are $L_{1}^{2}\left(B^{4}\right)$.

Local Yang-Mills Replacement

Theorem (YBK)

- For any $L_{1}^{2}\left(B^{4}\right)$ low-energy connection A, there exists a low-energy $L_{1}^{2}\left(B^{4}\right)$ Yang-Mills connection B, unique up to gauge, such that $i^{*} A=i^{*} B$.

Local Yang-Mills Replacement

Theorem (YBK)

- For any $L_{1}^{2}\left(B^{4}\right)$ low-energy connection A, there exists a low-energy $L_{1}^{2}\left(B^{4}\right)$ Yang-Mills connection B, unique up to gauge, such that $i^{*} A=i^{*} B$.
- There are \tilde{A} and \tilde{B}, gauge equivalent by an $L_{2}^{2}\left(B^{4}\right)$ gauge transformation to A and B, respectively, such that

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right)
$$

Local Yang-Mills Replacement

Theorem (YBK)

- For any $L_{1}^{2}\left(B^{4}\right)$ low-energy connection A, there exists a low-energy $L_{1}^{2}\left(B^{4}\right)$ Yang-Mills connection B, unique up to gauge, such that $i^{*} A=i^{*} B$.
- There are \tilde{A} and \tilde{B}, gauge equivalent by an $L_{2}^{2}\left(B^{4}\right)$ gauge transformation to A and B, respectively, such that

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right) .
$$

- The linear interpolation between A and B has monotone decreasing energy.

Local Yang-Mills Replacement

Theorem (YBK)

- For any $L_{1}^{2}\left(B^{4}\right)$ low-energy connection A, there exists a low-energy $L_{1}^{2}\left(B^{4}\right)$ Yang-Mills connection B, unique up to gauge, such that $i^{*} A=i^{*} B$.
- There are \tilde{A} and \tilde{B}, gauge equivalent by an $L_{2}^{2}\left(B^{4}\right)$ gauge transformation to A and B, respectively, such that

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right)
$$

- The linear interpolation between A and B has monotone decreasing energy.
- Equality if and only if A is already Yang-Mills.

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Harmonic maps

$$
u: B^{2} \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form.

$$
\left(d^{*} d u\right)^{\top}
$$

Yang-Mills connections
Connection $A=d+a$ on a principal G-bundle $P \rightarrow B^{4}$
a is a \mathfrak{g}-valued 1 -form.

$$
d_{A}^{*} F_{A}
$$

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Harmonic maps

$$
u: B^{2} \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form.

$$
\left(d^{*} d u\right)^{\top}
$$

Linearize near $u=$ constant.

Yang-Mills connections
Connection $A=d+a$ on a principal G-bundle $P \rightarrow B^{4}$
a is a \mathfrak{g}-valued 1-form.

$$
d_{A}^{*} F_{A}
$$

Linearize near $a=0$.

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Harmonic maps

$$
u: B^{2} \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form.

$$
\left(d^{*} d u\right)^{\top}
$$

Linearize near $u=$ constant.

$$
d^{*} d \phi \quad d^{*} d \alpha
$$

Yang-Mills connections
Connection $A=d+a$ on a principal G-bundle $P \rightarrow B^{4}$
a is a \mathfrak{g}-valued 1 -form.

$$
d_{A}^{*} F_{A}
$$

Linearize near $a=0$.

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Harmonic maps

$$
u: B^{2} \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form.

$$
\left(d^{*} d u\right)^{\top}
$$

Linearize near $u=$ constant.

$$
d^{*} d \phi=\Delta \phi \quad d^{*} d \alpha
$$

Yang-Mills connections
Connection $A=d+a$ on a principal G-bundle $P \rightarrow B^{4}$
a is a \mathfrak{g}-valued 1-form.

$$
d_{A}^{*} F_{A}
$$

Linearize near $a=0$.

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Harmonic maps

$$
u: B^{2} \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form.

$$
\left(d^{*} d u\right)^{\top}
$$

Linearize near $u=$ constant.

$$
d^{*} d \phi=\Delta \phi \quad d^{*} d \alpha \neq \Delta \alpha
$$

Yang-Mills connections
Connection $A=d+a$ on a principal G-bundle $P \rightarrow B^{4}$
a is a \mathfrak{g}-valued 1 -form.

$$
d_{A}^{*} F_{A}
$$

Linearize near $a=0$.

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Harmonic maps

$$
u: B^{2} \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form.

$$
\left(d^{*} d u\right)^{\top}
$$

Linearize near $u=$ constant.

$$
d^{*} d \phi=\Delta \phi
$$

Yang-Mills connections
Connection $A=d+a$ on a principal G-bundle $P \rightarrow B^{4}$
a is a \mathfrak{g}-valued 1-form.

$$
d_{A}^{*} F_{A}
$$

Linearize near $a=0$.
$d^{*} d \alpha \neq \Delta \alpha=d^{*} d \alpha+d d^{*} \alpha$

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Harmonic maps

$$
u: B^{2} \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form.

$$
\left(d^{*} d u\right)^{\top}
$$

Linearize near $u=$ constant.

$$
d^{*} d \phi=\Delta \phi
$$

$\phi \mapsto\left(d^{*} d \phi, i^{*} \phi\right)$ is invertible.

Yang-Mills connections
Connection $A=d+a$ on a principal G-bundle $P \rightarrow B^{4}$
a is a \mathfrak{g}-valued 1-form.

$$
d_{A}^{*} F_{A}
$$

Linearize near $a=0$.

$$
\begin{gathered}
d^{*} d \alpha \neq \Delta \alpha=d^{*} d \alpha+d d^{*} \alpha \\
\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right) \text { is not } \\
\text { invertible. }
\end{gathered}
$$

Linearization

To solve the Dirichlet problem, we want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection using the inverse function theorem.

Harmonic maps

$$
u: B^{2} \rightarrow M \subseteq \mathbb{R}^{N}
$$

u is an \mathbb{R}^{N}-valued 0 -form.

$$
\left(d^{*} d u\right)^{\top}
$$

Linearize near $u=$ constant.

$$
d^{*} d \phi=\Delta \phi
$$

$\phi \mapsto\left(d^{*} d \phi, i^{*} \phi\right)$ is invertible.

Yang-Mills connections
Connection $A=d+a$ on a principal G-bundle $P \rightarrow B^{4}$
a is a \mathfrak{g}-valued 1-form.

$$
d_{A}^{*} F_{A}
$$

Linearize near $a=0$.

$$
\begin{gathered}
d^{*} d \alpha \neq \Delta \alpha=d^{*} d \alpha+d d^{*} \alpha \\
\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right) \text { is not } \\
\text { invertible. }
\end{gathered}
$$

Solution: Can get $d^{*} \alpha=0$ by choosing a good gauge.

Gauge Fixing

Gauge transformations, that is, automorphisms of $P \rightarrow B^{4}$, act on connections on B^{4}.

Gauge Fixing

Gauge transformations, that is, automorphisms of $P \rightarrow B^{4}$, act on connections on B^{4}.

- Energy, and hence the Yang-Mills equations, are invariant under gauge transformations.

Gauge Fixing

Gauge transformations, that is, automorphisms of $P \rightarrow B^{4}$, act on connections on B^{4}.

- Energy, and hence the Yang-Mills equations, are invariant under gauge transformations.

Theorem (Dirichlet Uhlenbeck gauge fixing, YBK)
Any low-energy $L_{1}^{2}\left(\mathcal{B}^{4}\right)$ connection A is gauge equivalent to an $L_{1}^{2}\left(B^{4}\right)$ connection $\tilde{A}=d+$ ã such that:

- \tilde{A} is in Dirichlet Coulomb gauge, that is,
- $d^{*} \tilde{a}=0$ on B^{4}, and
- $d_{\partial B^{4}}^{*}{ }^{*} a \tilde{a}=0$ on ∂B^{4}.
- $\|\tilde{a}\|_{L_{1}^{2}\left(B^{4}\right)} \leq C\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}$.

Gauge Fixing

Gauge transformations, that is, automorphisms of $P \rightarrow B^{4}$, act on connections on B^{4}.

- Energy, and hence the Yang-Mills equations, are invariant under gauge transformations.

Theorem (Dirichlet Uhlenbeck gauge fixing, YBK)
Any low-energy $L_{1}^{2}\left(\mathcal{B}^{4}\right)$ connection A is gauge equivalent to an $L_{1}^{2}\left(B^{4}\right)$ connection $\tilde{A}=d+$ ã such that:

- \tilde{A} is in Dirichlet Coulomb gauge, that is,
- $d^{*} \tilde{a}=0$ on B^{4}, and
- $d_{\partial B^{4}}^{*}{ }^{*} \tilde{a}=0$ on ∂B^{4}.
- $\|\tilde{a}\|_{L_{1}^{2}\left(B^{4}\right)} \leq C\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}$.

The boundary condition $d_{\partial B^{4}}^{*} i^{*} \tilde{a}=0$ is preserved under gauge transformations satisfying Dirichlet boundary conditions.

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.
- Gauge fixing lets us assume $d^{*} \alpha=0$.

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.
- Gauge fixing lets us assume $d^{*} \alpha=0$.
- The linearization is now equal to $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$.

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.
- Gauge fixing lets us assume $d^{*} \alpha=0$.
- The linearization is now equal to $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$ is still not invertible on 1-forms.

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.
- Gauge fixing lets us assume $d^{*} \alpha=0$.
- The linearization is now equal to $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$ is still not invertible on 1-forms.
- Dirichlet boundary conditions for the Hodge Laplacian require specifying $i^{*} \alpha$ and $i^{*} d^{*} \alpha$.

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.
- Gauge fixing lets us assume $d^{*} \alpha=0$.
- The linearization is now equal to $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$ is still not invertible on 1-forms.
- Dirichlet boundary conditions for the Hodge Laplacian require specifying $i^{*} \alpha$ and $i^{*} d^{*} \alpha$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha, i^{*} d^{*} \alpha\right)$ is invertible, but only for $\alpha \in L_{2}^{2}\left(B^{4}\right)$.

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.
- Gauge fixing lets us assume $d^{*} \alpha=0$.
- The linearization is now equal to $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$ is still not invertible on 1-forms.
- Dirichlet boundary conditions for the Hodge Laplacian require specifying $i^{*} \alpha$ and $i^{*} d^{*} \alpha$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha, i^{*} d^{*} \alpha\right)$ is invertible, but only for $\alpha \in L_{2}^{2}\left(B^{4}\right)$.
- Restricting to ker d^{*} gives an isomorphism

$$
\left(d^{*} d, i^{*}\right): L_{2}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L^{2}\left(B^{4}\right) \cap \operatorname{range}\left(d^{*}\right) \times L_{3 / 2}^{2}\left(\partial B^{4}\right)
$$

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.
- Gauge fixing lets us assume $d^{*} \alpha=0$.
- The linearization is now equal to $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$ is still not invertible on 1-forms.
- Dirichlet boundary conditions for the Hodge Laplacian require specifying $i^{*} \alpha$ and $i^{*} d^{*} \alpha$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha, i^{*} d^{*} \alpha\right)$ is invertible, but only for $\alpha \in L_{2}^{2}\left(B^{4}\right)$.
- Restricting to ker d^{*} gives an isomorphism

$$
\left(d^{*} d, i^{*}\right): L_{2}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L^{2}\left(B^{4}\right) \cap \operatorname{range}\left(d^{*}\right) \times L_{3 / 2}^{2}\left(\partial B^{4}\right)
$$

- But in the regularity we want,

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right) \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

is not injective.

Solving the Dirichlet Problem

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$, which is not invertible.
- Gauge fixing lets us assume $d^{*} \alpha=0$.
- The linearization is now equal to $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha\right)$ is still not invertible on 1-forms.
- Dirichlet boundary conditions for the Hodge Laplacian require specifying $i^{*} \alpha$ and $i^{*} d^{*} \alpha$.
- $\alpha \mapsto\left(\Delta \alpha, i^{*} \alpha, i^{*} d^{*} \alpha\right)$ is invertible, but only for $\alpha \in L_{2}^{2}\left(B^{4}\right)$.
- Restricting to ker d^{*} gives an isomorphism

$$
\left(d^{*} d, i^{*}\right): L_{2}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L^{2}\left(B^{4}\right) \cap \operatorname{range}\left(d^{*}\right) \times L_{3 / 2}^{2}\left(\partial B^{4}\right)
$$

- But in the regularity we want,

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right) \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

is not injective.

- Solution: Use a target space slightly larger than $L_{-1}^{2}\left(B^{4}\right)$.

Solving the Dirichlet Problem

Choosing the Target Banach Space
We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$.

Solving the Dirichlet Problem

Choosing the Target Banach Space

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$.

Definition

Dual

$$
L_{1}^{2}\left(B^{4}\right)^{0}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right)|\alpha|_{\partial B^{4}}=0\right\} \quad L_{-1}^{2}\left(B^{4}\right)
$$

Solving the Dirichlet Problem

Choosing the Target Banach Space

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$.

Definition

Dual

$$
\begin{aligned}
& L_{1}^{2}\left(B^{4}\right)^{0}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right)|\alpha|_{\partial B^{4}}=0\right\} \\
& \int_{1}^{2}\left(B^{4}\right)^{\mathrm{rel}}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right) \mid i^{*} \alpha=0\right\}
\end{aligned}
$$

Solving the Dirichlet Problem

Choosing the Target Banach Space

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$.

Definition

Dual

$$
\begin{array}{rc}
L_{1}^{2}\left(B^{4}\right)^{0}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right)|\alpha|_{\partial B^{4}}=0\right\} & L_{-1}^{2}\left(B^{4}\right) \\
L_{1}^{2}\left(B^{4}\right)^{\mathrm{rel}}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right) \mid i^{*} \alpha=0\right\} & L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}}
\end{array}
$$

Solving the Dirichlet Problem

Choosing the Target Banach Space

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$.

Definition

Dual

$$
\begin{aligned}
L_{1}^{2}\left(B^{4}\right)^{0}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right)|\alpha|_{\partial B^{4}}=0\right\} & L_{-1}^{2}\left(B^{4}\right) \\
L_{1}^{2}\left(B^{4}\right)^{\mathrm{rel}}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right) \mid i^{*} \alpha=0\right\} & L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}}
\end{aligned}
$$

- $d^{*} d$ is bounded as an operator $d^{*} d: L_{1}^{2}\left(B^{4}\right) \rightarrow L_{-1}^{2}\left(B^{4}\right)$.

Solving the Dirichlet Problem

Choosing the Target Banach Space

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$.

Definition

Dual

$$
\begin{aligned}
L_{1}^{2}\left(B^{4}\right)^{0}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right)|\alpha|_{\partial B^{4}}=0\right\} & L_{-1}^{2}\left(B^{4}\right) \\
L_{1}^{2}\left(B^{4}\right)^{\mathrm{rel}}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right) \mid i^{*} \alpha=0\right\} & L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}}
\end{aligned}
$$

- $d^{*} d$ is bounded as an operator $d^{*} d: L_{1}^{2}\left(B^{4}\right) \rightarrow L_{-1}^{2}\left(B^{4}\right)$.
- $d^{*} d$ is still bounded as $d^{*} d: L_{1}^{2}\left(B^{4}\right) \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\text {rel }}$.

Solving the Dirichlet Problem

Choosing the Target Banach Space

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization is $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$.

Definition

Dual

$$
\begin{array}{lc}
L_{1}^{2}\left(B^{4}\right)^{0}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right)|\alpha|_{\partial B^{4}}=0\right\} & L_{-1}^{2}\left(B^{4}\right) \\
L_{1}^{2}\left(B^{4}\right)^{\mathrm{rel}}=\left\{\alpha \in L_{1}^{2}\left(B^{4}\right) \mid i^{*} \alpha=0\right\} & L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}}
\end{array}
$$

- $d^{*} d$ is bounded as an operator $d^{*} d: L_{1}^{2}\left(B^{4}\right) \rightarrow L_{-1}^{2}\left(B^{4}\right)$.
- $d^{*} d$ is still bounded as $d^{*} d: L_{1}^{2}\left(B^{4}\right) \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\text {rel }}$.
- $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

Solving the Dirichlet Problem

Projecting to range $\left(d^{*}\right)$
We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

Solving the Dirichlet Problem

Projecting to range $\left(d^{*}\right)$
We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

- Problem: $d_{A}^{*} F_{A}$ does not lie in range $\left(d^{*}\right)$ in general.

Solving the Dirichlet Problem

Projecting to range $\left(d^{*}\right)$
We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

- Problem: $d_{A}^{*} F_{A}$ does not lie in range $\left(d^{*}\right)$ in general.
- Solution: Project to range $\left(d^{*}\right)$.

Solving the Dirichlet Problem

Projecting to range $\left(d^{*}\right)$

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

- Problem: $d_{A}^{*} F_{A}$ does not lie in range $\left(d^{*}\right)$ in general.
- Solution: Project to range($\left.d^{*}\right)$.
- Let $\pi_{d^{*}}$ be the $L^{2}\left(B^{4}\right)$-projection to range $\left(d^{*}\right)$.

Solving the Dirichlet Problem

Projecting to range $\left(d^{*}\right)$

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

- Problem: $d_{A}^{*} F_{A}$ does not lie in range $\left(d^{*}\right)$ in general.
- Solution: Project to range($\left.d^{*}\right)$.
- Let $\pi_{d^{*}}$ be the $L^{2}\left(B^{4}\right)$-projection to range $\left(d^{*}\right)$.
- $\pi_{d^{*}}$ extends to a bounded operator $L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}}$.

Solving the Dirichlet Problem

Projecting to range $\left(d^{*}\right)$

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

- Problem: $d_{A}^{*} F_{A}$ does not lie in range $\left(d^{*}\right)$ in general.
- Solution: Project to range($\left.d^{*}\right)$.
- Let $\pi_{d^{*}}$ be the $L^{2}\left(B^{4}\right)$-projection to range $\left(d^{*}\right)$.
- $\pi_{d^{*}}$ extends to a bounded operator $L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}}$.
- The linearization of $A \mapsto\left(\pi_{d^{*}} d_{A}^{*} F_{A}, i^{*} A\right)$ at the trivial connection is $\left(\pi_{d^{*}} d^{*} d \alpha, i^{*} \alpha\right)=\left(d^{*} d \alpha, i^{*} \alpha\right)$.

Solving the Dirichlet Problem

Projecting to range $\left(d^{*}\right)$

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

- Problem: $d_{A}^{*} F_{A}$ does not lie in range $\left(d^{*}\right)$ in general.
- Solution: Project to range($\left.d^{*}\right)$.
- Let $\pi_{d^{*}}$ be the $L^{2}\left(B^{4}\right)$-projection to range $\left(d^{*}\right)$.
- $\pi_{d^{*}}$ extends to a bounded operator $L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}}$.
- The linearization of $A \mapsto\left(\pi_{d^{*}} d_{A}^{*} F_{A}, i^{*} A\right)$ at the trivial connection is $\left(\pi_{d^{*}} d^{*} d \alpha, i^{*} \alpha\right)=\left(d^{*} d \alpha, i^{*} \alpha\right)$.
- Given A_{∂} small in the $L_{1 / 2}^{2}\left(\partial B^{4}\right)$ norm, we can solve

$$
\begin{aligned}
\pi_{d^{*}} d_{A}^{*} F_{A} & =0 & & \text { on } B^{4} \\
i^{*} A & =A_{\partial} & & \text { on } \partial B^{4}
\end{aligned}
$$

Solving the Dirichlet Problem

Projecting to range $\left(d^{*}\right)$

We want to invert the map $A \mapsto\left(d_{A}^{*} F_{A}, i^{*} A\right)$ near the trivial connection, where A is an $L_{1}^{2}\left(B^{4}\right)$ connection.

- The linearization $\alpha \mapsto\left(d^{*} d \alpha, i^{*} \alpha\right)$ is invertible as an operator

$$
\left(d^{*} d, i^{*}\right): L_{1}^{2}\left(B^{4}\right) \cap \operatorname{ker} d^{*} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \cap \operatorname{range}\left(d^{*}\right) \times L_{1 / 2}^{2}\left(\partial B^{4}\right)
$$

- Problem: $d_{A}^{*} F_{A}$ does not lie in range $\left(d^{*}\right)$ in general.
- Solution: Project to range($\left.d^{*}\right)$.
- Let $\pi_{d^{*}}$ be the $L^{2}\left(B^{4}\right)$-projection to range $\left(d^{*}\right)$.
- $\pi_{d^{*}}$ extends to a bounded operator $L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}} \rightarrow L_{-1}^{2}\left(B^{4}\right)^{\mathrm{rel}}$.
- The linearization of $A \mapsto\left(\pi_{d^{*}} d_{A}^{*} F_{A}, i^{*} A\right)$ at the trivial connection is $\left(\pi_{d^{*}} d^{*} d \alpha, i^{*} \alpha\right)=\left(d^{*} d \alpha, i^{*} \alpha\right)$.
- Given A_{∂} small in the $L_{1 / 2}^{2}\left(\partial B^{4}\right)$ norm, we can solve

$$
\begin{aligned}
\pi_{d^{*}} d_{A}^{*} F_{A} & =0 & & \text { on } B^{4} \\
i^{*} A & =A_{\partial} & & \text { on } \partial B^{4}
\end{aligned}
$$

- We also have $d^{*} a=0$ and that a is small in $L_{1}^{2}\left(B^{4}\right)$.

Solving the Dirichlet Problem

Concluding that the connection minimizes energy

- We have found a $B=d+b$ such that $\pi_{d^{*}} d_{B}^{*} F_{B}=0$ and b is small in $L_{1}^{2}\left(B^{4}\right)$.

Solving the Dirichlet Problem

Concluding that the connection minimizes energy

- We have found a $B=d+b$ such that $\pi_{d^{*}} d_{B}^{*} F_{B}=0$ and b is small in $L_{1}^{2}\left(B^{4}\right)$.
- We want to conclude that $d_{B}^{*} F_{B}=0$.

Solving the Dirichlet Problem

Concluding that the connection minimizes energy

- We have found a $B=d+b$ such that $\pi_{d^{*}} d_{B}^{*} F_{B}=0$ and b is small in $L_{1}^{2}\left(B^{4}\right)$.
- We want to conclude that $d_{B}^{*} F_{B}=0$.
- In higher regularity $b \in L_{2}^{2}\left(B^{4}\right)$, given $\pi_{d^{*}} d_{B}^{*} F_{B}=0$, we can prove an inequality of the form

$$
\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} \leq C\|b\|_{L^{4}\left(B^{4}\right)}\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} .
$$

Solving the Dirichlet Problem

Concluding that the connection minimizes energy

- We have found a $B=d+b$ such that $\pi_{d^{*}} d_{B}^{*} F_{B}=0$ and b is small in $L_{1}^{2}\left(B^{4}\right)$.
- We want to conclude that $d_{B}^{*} F_{B}=0$.
- In higher regularity $b \in L_{2}^{2}\left(B^{4}\right)$, given $\pi_{d^{*}} d_{B}^{*} F_{B}=0$, we can prove an inequality of the form

$$
\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} \leq C\|b\|_{L^{4}\left(B^{4}\right)}\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} .
$$

- Conclude that $d_{B}^{*} F_{B}=0$ as long as $\|b\|_{L^{4}\left(B^{4}\right)}$ is small.

Solving the Dirichlet Problem

Concluding that the connection minimizes energy

- We have found a $B=d+b$ such that $\pi_{d^{*}} d_{B}^{*} F_{B}=0$ and b is small in $L_{1}^{2}\left(B^{4}\right)$.
- We want to conclude that $d_{B}^{*} F_{B}=0$.
- In higher regularity $b \in L_{2}^{2}\left(B^{4}\right)$, given $\pi_{d^{*}} d_{B}^{*} F_{B}=0$, we can prove an inequality of the form

$$
\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} \leq C\|b\|_{L^{4}\left(B^{4}\right)}\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} .
$$

- Conclude that $d_{B}^{*} F_{B}=0$ as long as $\|b\|_{L^{4}\left(B^{4}\right)}$ is small.
- This argument fails at $b \in L_{1}^{2}\left(B^{4}\right)$ regularity.

Solving the Dirichlet Problem

Concluding that the connection minimizes energy

- We have found a $B=d+b$ such that $\pi_{d^{*}} d_{B}^{*} F_{B}=0$ and b is small in $L_{1}^{2}\left(B^{4}\right)$.
- We want to conclude that $d_{B}^{*} F_{B}=0$.
- In higher regularity $b \in L_{2}^{2}\left(B^{4}\right)$, given $\pi_{d^{*}} d_{B}^{*} F_{B}=0$, we can prove an inequality of the form

$$
\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} \leq C\|b\|_{L^{4}\left(B^{4}\right)}\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} .
$$

- Conclude that $d_{B}^{*} F_{B}=0$ as long as $\|b\|_{L^{4}\left(B^{4}\right)}$ is small.
- This argument fails at $b \in L_{1}^{2}\left(B^{4}\right)$ regularity.
- Instead, we directly show that B locally minimizes energy and is thus Yang-Mills, using the inequality

$$
\|A-B\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right)
$$

Solving the Dirichlet Problem

Concluding that the connection minimizes energy

- We have found a $B=d+b$ such that $\pi_{d^{*}} d_{B}^{*} F_{B}=0$ and b is small in $L_{1}^{2}\left(B^{4}\right)$.
- We want to conclude that $d_{B}^{*} F_{B}=0$.
- In higher regularity $b \in L_{2}^{2}\left(B^{4}\right)$, given $\pi_{d^{*}} d_{B}^{*} F_{B}=0$, we can prove an inequality of the form

$$
\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} \leq C\|b\|_{L^{4}\left(B^{4}\right)}\left\|d_{B}^{*} F_{B}\right\|_{L^{2}\left(B^{4}\right)} .
$$

- Conclude that $d_{B}^{*} F_{B}=0$ as long as $\|b\|_{L^{4}\left(B^{4}\right)}$ is small.
- This argument fails at $b \in L_{1}^{2}\left(B^{4}\right)$ regularity.
- Instead, we directly show that B locally minimizes energy and is thus Yang-Mills, using the inequality

$$
\|A-B\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right) .
$$

- The inequality holds even if B only satisfies $\pi_{d^{*}} d_{B}^{*} F_{B}=0$, along with assumptions of small energy, matching on the boundary, and Dirichlet Coulomb gauge.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.
Bubbling

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.
Bubbling

- Yang-Mills replacement requires small energy on each ball.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

- Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

- Potential solution: Moving energy costs energy.

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right)
$$

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Limit cycles in the space of connections

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Limit cycles in the space of connections

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Limit cycles in the space of connections

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Limit cycles in the space of connections

- Differences must go to zero by

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right) .
$$

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Limit cycles in the space of connections

- Differences must go to zero by

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right) .
$$

- Not strong enough to guarantee convergence.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Limit cycles in the space of connections

- Differences must go to zero by

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right) .
$$

- Not strong enough to guarantee convergence.
- Can still use weak subsequence convergence.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Limit cycles in the space of connections

- Differences must go to zero by

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right) .
$$

- Not strong enough to guarantee convergence.
- Can still use weak subsequence convergence.
- The limiting global Yang-Mills connection will not depend continuously on the initial connection.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Limit cycles in the space of connections

- Differences must go to zero by

$$
\|\tilde{A}-\tilde{B}\|_{L_{1}^{2}\left(B^{4}\right)}^{2} \leq C\left(\left\|F_{A}\right\|_{L^{2}\left(B^{4}\right)}^{2}-\left\|F_{B}\right\|_{L^{2}\left(B^{4}\right)}^{2}\right) .
$$

- Not strong enough to guarantee convergence.
- Can still use weak subsequence convergence.
- The limiting global Yang-Mills connection will not depend continuously on the initial connection.
- Łojasiewicz inequality.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

minimal Yang-
Mills connection

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

minimal Yang-
Mills connection

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

index 1 Yang-Mills
connection
minimal Yang-
Mills connection

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

index 1 Yang-Mills
connection
minimal Yang-
Mills connection

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

index 1 Yang-Mills
connection
minimal Yang-
Mills connection

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

index 1 Yang-Mills
connection
minimal Yang-
Mills connection

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

- Global Yang-Mills replacement cannot be continuous in the initial data.

Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
Yang-Mills connections with positive Morse index

- Global Yang-Mills replacement cannot be continuous in the initial data.
- Might be continuous if the initial data is below all non-minimal critical points.

Thank You

Acknowledgments
－Tom Mrowka
－National Science Foundation
－Department of Defense，NDSEG
Selected References
围 Tobias H．Colding and William P．Minicozzi，II，Width and finite extinction time of Ricci flow，Geom．Topol． 12 （2008）， no．5，2537－2586．MR 2460871 （2009k：53166）

嗇 Antonella Marini，Dirichlet and Neumann boundary value problems for Yang－Mills connections，Comm．Pure Appl． Math． 45 （1992），no．8，1015－1050．MR 1168118 （93k：58059）

雷 Karen K．Uhlenbeck，Connections with L ${ }^{p}$ bounds on curvature，Comm．Math．Phys． 83 （1982），no．1，31－42．MR 648356 （83e：53035）

Towards Global Yang-Mills Replacement

Bonus Slide

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.
Discontinuous normal components

- Only the tangential components of the replacement match the original connection on ∂B^{4}.
- The normal derivative of the normal component of the new connection is not $L^{2}(X)$ across ∂B^{4}.
- After local Yang-Mills replacement, the global connection is no longer $L_{1}^{2}(X)$.
- Solution: With a different choice of gauge on a slightly larger ball, the connection becomes $L_{1}^{2}(X)$.

