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» By locally replacing f with a harmonic function, we get a
global harmonic function in the limit.

» Colding and Minicozzi (2008) locally replace maps
u: ¥2 — M with harmonic maps, with bounds.

> | showed that one can similarly locally replace connections on
4-manifolds with Yang-Mills connections, with bounds.
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Applications

» Colding and Minicozzi used harmonic replacement to prove
finite extinction time of Ricci flow on homotopy 3-spheres.
» They construct a sweep-out of the 3-sphere by immersed
2-spheres and “tighten” each 2-sphere using harmonic
replacement.

» Yang-Mills replacement could relate the topology of the
moduli space of anti-self-dual Yang-Mills connections to the
topology of all connections modulo gauge.

» Taubes, Stable Topology (1989).

» Donaldson invariants.

» Perform Yang-Mills replacement on connections in a compact
family representing a homotopy or homology class.

» Yang-Mills replacement has parallels with Yang-Mills gradient
flow.

> Ability to choose balls gives more control.
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Harmonic maps

Yang-Mills connections

u: Y - MCRN

u is an RN-valued 0-form on
Y.

du is an RN-valued 1-form.

Energy = %fz |du\2

Invariant under conformal
change of metric if dim¥X =2

(Au)T = (d*du)T =0.

Connection A on a principal
G-bundle P — X

Locally, A=d+a, ais a
g-valued 1-form on X.
Fa=da+3[ana)isa

g-valued 2-form.
2
Energy = %fx |Fal

Invariant under conformal

change of metric if dim X =4

d;F, = 0.
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To locally replace a connection with a Yang-Mills connection,
we must solve the Dirichlet problem.

v

On B*, for “small” boundary data Ay on OB*, we must solve:

diF,=0 on B*
i*A= Ay on dB*

v

Solved by Marini (1992) for smooth boundary values.

v

Our boundary values are L3 ,(9B8*), and solutions are L(B*).
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Local Yang-Mills Replacement

Theorem (YBK)

> For any L2(B*) low-energy connection A, there exists a
low-energy L2(B*) Yang-Mills connection B, unique up to
gauge, such that i*A = i*B.

> There are A and B, gauge equivalent by an L3(B*) gauge
transformation to A and B, respectively, such that

~ 112
A—B
12(8%)

< € (1IFalliz(ery = IFallizer) -

> The linear interpolation between A and B has monotone
decreasing energy.

» Equality if and only if A is already Yang-Mills.
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Linearization

To solve the Dirichlet problem, we want to invert the map
A — (d3F4, " A) near the trivial connection using the inverse

function theorem.

Harmonic maps

Yang-Mills connections

u: B2 5 MCRN
u is an RN-valued 0-form.
(d*du)’
Linearize near u = constant.

d*dp = Ao

¢ — (d*do, i*¢) is invertible.

Connection A=d+ aon a
principal G-bundle P — B*

ais a g-valued 1-form.
daFa
Linearize near a = 0.
d*da # Aa = d*da + dd*«
a— (d*da, i*a) is not
invertible.
Solution: Can get d*a =0 by
choosing a good gauge.
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Gauge transformations, that is, automorphisms of P — B*, act on
connections on B*.

> Energy, and hence the Yang-Mills equations, are invariant
under gauge transformations.

Theorem (Dirichlet Uhlenbeck gauge fixing, YBK)

Any low-energy L2(B*) connection A is gauge equivalent to an
L2(B*) connection A = d + 3 such that:
» A is in Dirichlet Coulomb gauge, that is,
» d*3=0 on B* and
> dgei*3 =0 on OB,

> llall 28y < ClIFall2(ge)-

The boundary condition dj5,i*3 = 0 is preserved under gauge
transformations satisfying Dirichlet boundary conditions.
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> Gauge fixing lets us assume d*«a = 0.
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a— (Aa, i*a) is still not invertible on 1-forms.
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v

v

Restricting to ker d* gives an isomorphism

(d*d,i*): L5(B*) Nkerd* — L*(B*) Nrange(d*) x L3 ,(0B*).

v

But in the regularity we want,
(d*d,i*): L3(B*)Nker d* — L2,(B*)Nrange(d*) x L] ;,(9B")

is not injective.

v

Solution: Use a target space slightly larger than L?;(B*).
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Projecting to range(d™)
We want to invert the map A+ (d;F,, i*A) near the trivial
connection, where A is an L2(B*) connection.
» The linearization a +— (d*da, i*«) is invertible as an operator

(d*d,i*): L3(B*)nker d* — L2 1(B*) ' Nrange(d*)x L3 ,(9B").

v

Problem: d}F, does not lie in range(d*) in general.
Solution: Project to range(d*).
» Let my4+ be the L?(B*)-projection to range(d*).
> T4+ extends to a bounded operator [2,(B*)" — [2,(B%)
» The linearization of A — (7g+d}Fa,i*A) at the trivial
connection is (my+d*da, i*a) = (d*da, i*).
%/2(884) norm, we can solve
mg+diFa=0 on B*

i*A= Ay on dB*

v

rel

v

Given Ag small in the L

v

We also have d*a = 0 and that a is small in L2(B*).
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Concluding that the connection minimizes energy
» We have found a B = d + b such that mg«dgFg =0 and b is
small in L3(B*).
» We want to conclude that dgFg = 0.
» In higher regularity b € L3(B*), given m4-dFg = 0, we can
prove an inequality of the form

ldgFall2gey < ClIblls(pey IdBFall 284 -
> Conclude that dgFgz = 0 as long as | b|| 4(gs) is small.

» This argument fails at b € L3(B*) regularity.
> Instead, we directly show that B locally minimizes energy and
is thus Yang-Mills, using the inequality

14— Blagey < C (I1FalZer) — I FollZen) ) -

» The inequality holds even if B only satisfies my-djFg =0,
along with assumptions of small energy, matching on the
boundary, and Dirichlet Coulomb gauge.
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Towards Global Yang-Mills Replacement

We want to repeat Yang-Mills replacement on balls covering the
manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

v

Yang-Mills replacement requires small energy on each ball.

v

We can guarantee this initially by choosing small enough balls.

v

Yang-Mills replacement on one ball might concentrate energy
in another ball.

Start with at most

Replacement could 5 energy here.
move energy inward. Bad if ¢ energy
gets here.

v

Potential solution: Moving energy costs energy.
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Limit cycles in the space of connections

» Differences must go to zero by

sy < € (IFallzge) — IFallizan)
1

» Not strong enough to guarantee convergence.

» Can still use weak subsequence convergence.

» The limiting global Yang-Mills connection will not depend
continuously on the initial connection.

» lLojasiewicz inequality.
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Towards Global Yang-Mills Replacement
We want to repeat Yang-Mills replacement on balls covering the
manifold X to obtain a global Yang-Mills connection in the limit.
» Given a compact family of connections, we can choose the
sequence of balls uniformly for the entire family.
> Ideally, the limiting Yang-Mills connection will depend
continuously on the initial connection.

Yang-Mills connections with positive Morse index

Compact family of

connections index 1 Yang-Mills

connection

minimal Yang-
Mills connection

» Global Yang-Mills replacement cannot be continuous in the
initial data.
» Might be continuous if the initial data is below all non-minimal
critical points.
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Towards Global Yang-Mills Replacement

Bonus Slide

We want to repeat Yang-Mills replacement on balls covering the
manifold X to obtain a global Yang-Mills connection in the limit.

Discontinuous normal components
» Only the tangential components of the replacement match the
original connection on 9B*.

» The normal derivative of the normal component of the new
connection is not L2(X) across 0B*.

> After local Yang-Mills replacement, the global connection is
no longer L2(X).

» Solution: With a different choice of gauge on a slightly larger
ball, the connection becomes L2(X).



