Yang-Mills Replacement

Yakov Berchenko-Kogan

Massachusetts Institute of Technology

14 November, 2015

(ロ)、(型)、(E)、(E)、 E) の(の)

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

► By locally replacing f with a harmonic function, we get a global harmonic function in the limit.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

► By locally replacing f with a harmonic function, we get a global harmonic function in the limit.

Colding and Minicozzi (2008) locally replace maps u: Σ² → M with harmonic maps, with bounds.

Example

Let $f: [0,1] \rightarrow \mathbb{R}$. We want to make f harmonic while fixing its boundary values.

- ► By locally replacing f with a harmonic function, we get a global harmonic function in the limit.
- Colding and Minicozzi (2008) locally replace maps $u: \Sigma^2 \to M$ with harmonic maps, with bounds.
- I showed that one can similarly locally replace connections on 4-manifolds with Yang-Mills connections, with bounds.

 Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
 - They construct a sweep-out of the 3-sphere by immersed 2-spheres and "tighten" each 2-sphere using harmonic replacement.

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
 - They construct a sweep-out of the 3-sphere by immersed 2-spheres and "tighten" each 2-sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
 - They construct a sweep-out of the 3-sphere by immersed 2-spheres and "tighten" each 2-sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.

► Taubes, *Stable Topology* (1989).

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
 - They construct a sweep-out of the 3-sphere by immersed 2-spheres and "tighten" each 2-sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.

- ► Taubes, *Stable Topology* (1989).
- Donaldson invariants.

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
 - They construct a sweep-out of the 3-sphere by immersed 2-spheres and "tighten" each 2-sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
 - ► Taubes, *Stable Topology* (1989).
 - Donaldson invariants.
 - Perform Yang-Mills replacement on connections in a compact family representing a homotopy or homology class.

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
 - They construct a sweep-out of the 3-sphere by immersed 2-spheres and "tighten" each 2-sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
 - ► Taubes, *Stable Topology* (1989).
 - Donaldson invariants.
 - Perform Yang-Mills replacement on connections in a compact family representing a homotopy or homology class.

 Yang-Mills replacement has parallels with Yang-Mills gradient flow.

- Colding and Minicozzi used harmonic replacement to prove finite extinction time of Ricci flow on homotopy 3-spheres.
 - They construct a sweep-out of the 3-sphere by immersed 2-spheres and "tighten" each 2-sphere using harmonic replacement.
- Yang-Mills replacement could relate the topology of the moduli space of anti-self-dual Yang-Mills connections to the topology of all connections modulo gauge.
 - ► Taubes, *Stable Topology* (1989).
 - Donaldson invariants.
 - Perform Yang-Mills replacement on connections in a compact family representing a homotopy or homology class.

- Yang-Mills replacement has parallels with Yang-Mills gradient flow.
 - Ability to choose balls gives more control.

Harmonic maps

Yang-Mills connections

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Harmonic maps	Yang-Mills connections
$u\colon\Sigma o M\subseteq\mathbb{R}^N$	Connection A on a principal G -bundle $P o X$

_

Harmonic maps	Yang-Mills connections
$u\colon\Sigma o M\subseteq\mathbb{R}^N$	Connection A on a principal G -bundle $P o X$
<i>u</i> is an \mathbb{R}^N -valued 0-form on Σ .	Locally, $A = d + a$, a is a q-valued 1-form on X.

Harmonic maps	Yang-Mills connections
$u\colon \Sigma o M \subseteq \mathbb{R}^N$	Connection A on a principal G -bundle $P o X$
<i>u</i> is an \mathbb{R}^N -valued 0-form on Σ .	Locally, $A = d + a$, a is a g-valued 1-form on X.
du is an \mathbb{R}^N -valued 1-form.	$F_{A}=da+rac{1}{2}[a\wedge a]$ is a $\mathfrak{g} ext{-valued 2-form.}$

Harmonic maps	Yang-Mills connections
$u\colon \Sigma o M \subseteq \mathbb{R}^N$	Connection A on a principal G -bundle $P \rightarrow X$
<i>u</i> is an \mathbb{R}^N -valued 0-form on Σ .	Locally, $A = d + a$, a is a g-valued 1-form on X.
du is an \mathbb{R}^N -valued 1-form.	$egin{array}{ll} {\cal F}_{\cal A} = d a + rac{1}{2} [a \wedge a] ext{ is a} \ {\mathfrak g} ext{-valued 2-form.} \end{array}$
$Energy = rac{1}{2} \int_{\Sigma} du ^2$	$Energy = rac{1}{2} \int_X \mathcal{F}_{\mathcal{A}} ^2$

<□ > < @ > < E > < E > E のQ @

Harmonic maps	Yang-Mills connections
$u\colon\Sigma o M\subseteq\mathbb{R}^N$	Connection A on a principal G -bundle $P \rightarrow X$
<i>u</i> is an \mathbb{R}^N -valued 0-form on Σ .	Locally, $A = d + a$, a is a g-valued 1-form on X.
du is an \mathbb{R}^N -valued 1-form.	$F_{\mathcal{A}} = d a + rac{1}{2} [a \wedge a]$ is a \mathfrak{g} -valued 2-form.
Energy $=rac{1}{2}\int_{\Sigma} du ^2$	Energy $=rac{1}{2}\int_X \mathcal{F}_{\mathcal{A}} ^2$
Invariant under conformal change of metric if dim $\Sigma=2$	Invariant under conformal change of metric if dim $X = 4$

Harmonic maps	Yang-Mills connections
$u\colon\Sigma o M\subseteq\mathbb{R}^N$	Connection A on a principal G -bundle $P o X$
<i>u</i> is an \mathbb{R}^N -valued 0-form on Σ .	Locally, $A = d + a$, a is a g-valued 1-form on X.
du is an \mathbb{R}^N -valued 1-form.	$F_{\mathcal{A}} = d a + rac{1}{2} [a \wedge a]$ is a $\mathfrak{g} ext{-valued}$ 2-form.
$Energy = rac{1}{2} \int_{\Sigma} du ^2$	Energy $=rac{1}{2}\int_X \mathcal{F}_{\mathcal{A}} ^2$
Invariant under conformal change of metric if dim $\Sigma=2$	Invariant under conformal change of metric if dim $X = 4$
$(\Delta u)^{\top} = (d^*du)^{\top} = 0.$	$d_A^*F_A=0.$

To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- ▶ On B^4 , for "small" boundary data A_∂ on ∂B^4 , we must solve:

$$egin{array}{ll} d_A^*F_A &= 0 & ext{on} \ B^4 & \ i^*A &= A_\partial & ext{on} \ \partial B^4 \end{array}$$

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- ▶ On B^4 , for "small" boundary data A_∂ on ∂B^4 , we must solve:

$$d_A^* F_A = 0$$
 on B^4
 $i^* A = A_\partial$ on ∂B^4

Solved by Marini (1992) for smooth boundary values.

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- ▶ On B^4 , for "small" boundary data A_∂ on ∂B^4 , we must solve:

$$d_A^* F_A = 0$$
 on B^4
 $i^* A = A_\partial$ on ∂B^4

Solved by Marini (1992) for smooth boundary values.
The Dirichlet Problem

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- ▶ On B^4 , for "small" boundary data A_∂ on ∂B^4 , we must solve:

$$d_A^*F_A = 0$$
 on B^4
 $i^*A = A_\partial$ on ∂B^4

Solved by Marini (1992) for smooth boundary values.

The Dirichlet Problem

- To locally replace a connection with a Yang-Mills connection, we must solve the Dirichlet problem.
- ▶ On B^4 , for "small" boundary data A_∂ on ∂B^4 , we must solve:

$$egin{array}{lll} d_A^*F_A &= 0 & ext{ on } B^4 \ i^*A &= A_\partial & ext{ on } \partial B^4 \end{array}$$

Solved by Marini (1992) for smooth boundary values.

1

• Our boundary values are $L^2_{1/2}(\partial B^4)$, and solutions are $L^2_1(B^4)$.

Theorem (YBK)

For any L²₁(B⁴) low-energy connection A, there exists a low-energy L²₁(B⁴) Yang-Mills connection B, unique up to gauge, such that i^{*}A = i^{*}B.

Theorem (YBK)

- For any L²₁(B⁴) low-energy connection A, there exists a low-energy L²₁(B⁴) Yang-Mills connection B, unique up to gauge, such that i^{*}A = i^{*}B.
- ► There are à and B̃, gauge equivalent by an L²₂(B⁴) gauge transformation to A and B, respectively, such that

$$\left\|\tilde{A}-\tilde{B}\right\|_{L^{2}_{1}(B^{4})}^{2} \leq C\left(\|F_{A}\|_{L^{2}(B^{4})}^{2}-\|F_{B}\|_{L^{2}(B^{4})}^{2}\right).$$

Theorem (YBK)

- For any L²₁(B⁴) low-energy connection A, there exists a low-energy L²₁(B⁴) Yang-Mills connection B, unique up to gauge, such that i^{*}A = i^{*}B.
- ► There are à and B̃, gauge equivalent by an L²₂(B⁴) gauge transformation to A and B, respectively, such that

$$\left\|\tilde{A} - \tilde{B}\right\|_{L^{2}_{1}(B^{4})}^{2} \leq C\left(\|F_{A}\|_{L^{2}(B^{4})}^{2} - \|F_{B}\|_{L^{2}(B^{4})}^{2}\right).$$

The linear interpolation between A and B has monotone decreasing energy.

Theorem (YBK)

- For any L²₁(B⁴) low-energy connection A, there exists a low-energy L²₁(B⁴) Yang-Mills connection B, unique up to gauge, such that i^{*}A = i^{*}B.
- ► There are à and B̃, gauge equivalent by an L²₂(B⁴) gauge transformation to A and B, respectively, such that

$$\left\|\tilde{A}-\tilde{B}\right\|_{L^{2}_{1}(B^{4})}^{2} \leq C\left(\|F_{A}\|_{L^{2}(B^{4})}^{2}-\|F_{B}\|_{L^{2}(B^{4})}^{2}\right).$$

- The linear interpolation between A and B has monotone decreasing energy.
 - Equality if and only if A is already Yang-Mills.

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u\colon B^2\to M\subseteq\mathbb{R}^N$	Connection $A=d+a$ on a principal G -bundle $P ightarrow B^4$
<i>u</i> is an \mathbb{R}^N -valued 0-form.	<i>a</i> is a g-valued 1-form.
$(d^*du)^ op$	$d_{A}^{*}F_{A}$

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u\colon B^2 o M \subseteq \mathbb{R}^N$	Connection $A=d+a$ on a principal G -bundle $P o B^4$
<i>u</i> is an \mathbb{R}^N -valued 0-form.	<i>a</i> is a g-valued 1-form.
$(d^*du)^ op$	$d_A^*F_A$
Linearize near $u = constant$.	Linearize near $a = 0$.

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u\colon B^2 o M \subseteq \mathbb{R}^N$	Connection $A = d + a$ on a principal <i>G</i> -bundle $P o B^4$
<i>u</i> is an \mathbb{R}^N -valued 0-form.	<i>a</i> is a g-valued 1-form.
$(d^*du)^ op$	$d_A^*F_A$
Linearize near $u = \text{constant}$.	Linearize near $a = 0$.
$d^*d\phi$	d^*dlpha

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u\colon B^2 o M \subseteq \mathbb{R}^N$	Connection $A=d+a$ on a principal <i>G</i> -bundle $P ightarrow B^4$
<i>u</i> is an \mathbb{R}^N -valued 0-form.	<i>a</i> is a g-valued 1-form.
$(d^*du)^ op$	$d_A^*F_A$
Linearize near $u = \text{constant}$.	Linearize near $a = 0$.
$d^*d\phi=\Delta\phi$	d^*dlpha

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u\colon B^2 o M \subseteq \mathbb{R}^N$	Connection $A=d+a$ on a principal <i>G</i> -bundle $P ightarrow B^4$
<i>u</i> is an \mathbb{R}^N -valued 0-form.	<i>a</i> is a g-valued 1-form.
$(d^*du)^ op$	$d_A^*F_A$
Linearize near $u = \text{constant}$.	Linearize near $a = 0$.
$d^*d\phi=\Delta\phi$	$d^*dlpha eq \Delta lpha$

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u\colon B^2 o M \subseteq \mathbb{R}^N$	Connection $A=d+a$ on a principal <i>G</i> -bundle $P ightarrow B^4$
u is an \mathbb{R}^N -valued 0-form.	<i>a</i> is a g-valued 1-form.
$(d^*du)^ op$	$d_A^*F_A$
Linearize near $u = \text{constant}$.	Linearize near $a = 0$.
$d^*d\phi=\Delta\phi$	$d^*d\alpha \neq \Delta \alpha = d^*d\alpha + dd^*\alpha$

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u\colon B^2 o M \subseteq \mathbb{R}^N$	Connection $A = d + a$ on a principal <i>G</i> -bundle $P \rightarrow B^4$
<i>u</i> is an \mathbb{R}^N -valued 0-form.	a is a g-valued 1-form.
$(d^*du)^ op$	$d_A^*F_A$
Linearize near $u = constant$.	Linearize near $a = 0$.
$d^*d\phi=\Delta\phi$	$d^*d\alpha \neq \Delta \alpha = d^*d\alpha + dd^*\alpha$
$\phi\mapsto (d^*d\phi,i^*\phi)$ is invertible.	$\alpha \mapsto (d^* d\alpha, i^* \alpha)$ is not invertible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

To solve the Dirichlet problem, we want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection using the inverse function theorem.

Harmonic maps	Yang-Mills connections
$u\colon B^2\to M\subseteq\mathbb{R}^N$	Connection $A = d + a$ on a principal <i>G</i> -bundle $P \rightarrow B^4$
<i>u</i> is an \mathbb{R}^N -valued 0-form.	<i>a</i> is a g-valued 1-form.
$(d^*du)^ op$	$d_{A}^{*}F_{A}$
Linearize near $u = $ constant.	Linearize near $a = 0$.
$d^*d\phi=\Delta\phi$	$d^*dlpha eq \Delta lpha = d^*dlpha + dd^*lpha$
$\phi\mapsto (d^*d\phi,i^*\phi)$ is invertible.	$\alpha \mapsto (d^* d\alpha, i^* \alpha)$ is not invertible.
	Solution: Can get $d^*\alpha = 0$ by choosing a good gauge.

Gauge transformations, that is, automorphisms of $P \rightarrow B^4$, act on connections on B^4 .

Gauge transformations, that is, automorphisms of $P \rightarrow B^4$, act on connections on B^4 .

 Energy, and hence the Yang-Mills equations, are invariant under gauge transformations.

Gauge transformations, that is, automorphisms of $P \rightarrow B^4$, act on connections on B^4 .

 Energy, and hence the Yang-Mills equations, are invariant under gauge transformations.

Theorem (Dirichlet Uhlenbeck gauge fixing, YBK) Any low-energy $L_1^2(B^4)$ connection A is gauge equivalent to an $L_1^2(B^4)$ connection $\tilde{A} = d + \tilde{a}$ such that:

Ã is in Dirichlet Coulomb gauge, that is,

• $d^*_{\partial B^4}i^*\tilde{a} = 0$ on ∂B^4 .

•
$$\|\tilde{a}\|_{L^2_1(B^4)} \leq C \|F_A\|_{L^2(B^4)}.$$

Gauge transformations, that is, automorphisms of $P \rightarrow B^4$, act on connections on B^4 .

 Energy, and hence the Yang-Mills equations, are invariant under gauge transformations.

Theorem (Dirichlet Uhlenbeck gauge fixing, YBK) Any low-energy $L_1^2(B^4)$ connection A is gauge equivalent to an $L_1^2(B^4)$ connection $\tilde{A} = d + \tilde{a}$ such that:

Ã is in Dirichlet Coulomb gauge, that is,

• $d^*_{\partial B^4}i^*\tilde{a} = 0$ on ∂B^4 .

•
$$\|\tilde{a}\|_{L^2_1(B^4)} \leq C \|F_A\|_{L^2(B^4)}.$$

The boundary condition $d^*_{\partial B^4}{}^*\tilde{a} = 0$ is preserved under gauge transformations satisfying Dirichlet boundary conditions.

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.

• Gauge fixing lets us assume $d^*\alpha = 0$.

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.

- Gauge fixing lets us assume $d^*\alpha = 0$.
 - The linearization is now equal to $\alpha \mapsto (\Delta \alpha, i^* \alpha)$.

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.

- Gauge fixing lets us assume $d^*\alpha = 0$.
 - The linearization is now equal to $\alpha \mapsto (\Delta \alpha, i^* \alpha)$.
- $\alpha \mapsto (\Delta \alpha, i^* \alpha)$ is still not invertible on 1-forms.

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

- The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.
- Gauge fixing lets us assume $d^*\alpha = 0$.
 - The linearization is now equal to $\alpha \mapsto (\Delta \alpha, i^* \alpha)$.
- $\alpha \mapsto (\Delta \alpha, i^* \alpha)$ is still not invertible on 1-forms.
 - Dirichlet boundary conditions for the Hodge Laplacian require specifying i^{*}α and i^{*}d^{*}α.

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

- The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.
- Gauge fixing lets us assume $d^*\alpha = 0$.
 - The linearization is now equal to $\alpha \mapsto (\Delta \alpha, i^* \alpha)$.
- $\alpha \mapsto (\Delta \alpha, i^* \alpha)$ is still not invertible on 1-forms.
 - Dirichlet boundary conditions for the Hodge Laplacian require specifying i^{*}α and i^{*}d^{*}α.

• $\alpha \mapsto (\Delta \alpha, i^* \alpha, i^* d^* \alpha)$ is invertible, but only for $\alpha \in L^2_2(B^4)$.

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

- The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.
- Gauge fixing lets us assume $d^*\alpha = 0$.
 - The linearization is now equal to $\alpha \mapsto (\Delta \alpha, i^* \alpha)$.
- $\alpha \mapsto (\Delta \alpha, i^* \alpha)$ is still not invertible on 1-forms.
 - Dirichlet boundary conditions for the Hodge Laplacian require specifying i^{*}α and i^{*}d^{*}α.
 - $\alpha \mapsto (\Delta \alpha, i^* \alpha, i^* d^* \alpha)$ is invertible, but only for $\alpha \in L^2_2(B^4)$.
- Restricting to ker d^* gives an isomorphism

 $(d^*d, i^*) \colon L^2_2(B^4) \cap \ker d^* \to L^2(B^4) \cap \operatorname{range}(d^*) \times L^2_{3/2}(\partial B^4).$

(日) (同) (三) (三) (三) (○) (○)

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

- The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.
- Gauge fixing lets us assume $d^*\alpha = 0$.
 - The linearization is now equal to $\alpha \mapsto (\Delta \alpha, i^* \alpha)$.
- $\alpha \mapsto (\Delta \alpha, i^* \alpha)$ is still not invertible on 1-forms.
 - Dirichlet boundary conditions for the Hodge Laplacian require specifying i^{*}α and i^{*}d^{*}α.
 - $\alpha \mapsto (\Delta \alpha, i^* \alpha, i^* d^* \alpha)$ is invertible, but only for $\alpha \in L^2_2(B^4)$.
- Restricting to ker d^* gives an isomorphism

 (d^*d, i^*) : $L^2_2(B^4) \cap \ker d^* \to L^2(B^4) \cap \operatorname{range}(d^*) \times L^2_{3/2}(\partial B^4).$

But in the regularity we want,

 (d^*d, i^*) : $L^2_1(B^4) \cap \ker d^* \to L^2_{-1}(B^4) \cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4)$ is not injective.

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

- The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$, which is not invertible.
- Gauge fixing lets us assume $d^*\alpha = 0$.
 - The linearization is now equal to $\alpha \mapsto (\Delta \alpha, i^* \alpha)$.
- $\alpha \mapsto (\Delta \alpha, i^* \alpha)$ is still not invertible on 1-forms.
 - Dirichlet boundary conditions for the Hodge Laplacian require specifying i^{*}α and i^{*}d^{*}α.
 - $\alpha \mapsto (\Delta \alpha, i^* \alpha, i^* d^* \alpha)$ is invertible, but only for $\alpha \in L^2_2(B^4)$.
- Restricting to ker d* gives an isomorphism

 $(d^*d, i^*) \colon L^2_2(B^4) \cap \ker d^* \to L^2(B^4) \cap \operatorname{range}(d^*) \times L^2_{3/2}(\partial B^4).$

But in the regularity we want,

 (d^*d, i^*) : $L^2_1(B^4) \cap \ker d^* \to L^2_{-1}(B^4) \cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4)$

is not injective.

► Solution: Use a target space slightly larger than $L^2_{-1}(B^4)$.

Choosing the Target Banach Space

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$.

Choosing the Target Banach Space

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$.

Definition

Dual

$$L_1^2(B^4)^0 = \{ \alpha \in L_1^2(B^4) \mid \alpha \mid_{\partial B^4} = 0 \} \qquad \qquad L_{-1}^2(B^4)$$

Choosing the Target Banach Space

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$.

Definition

Dual

Choosing the Target Banach Space

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$.

Definition

Dual

$$L_{1}^{2}(B^{4})^{0} = \{ \alpha \in L_{1}^{2}(B^{4}) \mid \alpha \mid_{\partial B^{4}} = 0 \} \qquad \qquad L_{-1}^{2}(B^{4})$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ L_{1}^{2}(B^{4})^{\text{rel}} = \{ \alpha \in L_{1}^{2}(B^{4}) \mid i^{*}\alpha = 0 \} \qquad \qquad L_{-1}^{2}(B^{4})^{\text{rel}}$$

Choosing the Target Banach Space

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$.

Definition

Dual

$$L_{1}^{2}(B^{4})^{0} = \{ \alpha \in L_{1}^{2}(B^{4}) \mid \alpha \mid_{\partial B^{4}} = 0 \} \qquad \qquad L_{-1}^{2}(B^{4})$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad L_{1}^{2}(B^{4})^{\text{rel}} = \{ \alpha \in L_{1}^{2}(B^{4}) \mid i^{*}\alpha = 0 \} \qquad \qquad L_{-1}^{2}(B^{4})^{\text{rel}}$$

• d^*d is bounded as an operator $d^*d \colon L^2_1(B^4) \to L^2_{-1}(B^4)$.

Choosing the Target Banach Space

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$.

Definition

Dual

$$L_{1}^{2}(B^{4})^{0} = \{ \alpha \in L_{1}^{2}(B^{4}) \mid \alpha \mid_{\partial B^{4}} = 0 \} \qquad \qquad L_{-1}^{2}(B^{4})$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad L_{1}^{2}(B^{4})^{\text{rel}} = \{ \alpha \in L_{1}^{2}(B^{4}) \mid i^{*}\alpha = 0 \} \qquad \qquad L_{-1}^{2}(B^{4})^{\text{rel}}$$

▶ d^*d is bounded as an operator $d^*d \colon L^2_1(B^4) \to L^2_{-1}(B^4)$. ▶ d^*d is still bounded as $d^*d \colon L^2_1(B^4) \to L^2_{-1}(B^4)^{\text{rel}}$.

Choosing the Target Banach Space

We want to invert the map $A \mapsto (d_A^*F_A, i^*A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization is $\alpha \mapsto (d^*d\alpha, i^*\alpha)$.

Definition

Dual

$$L_{1}^{2}(B^{4})^{0} = \{ \alpha \in L_{1}^{2}(B^{4}) \mid \alpha \mid_{\partial B^{4}} = 0 \} \qquad \qquad L_{-1}^{2}(B^{4})$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad L_{1}^{2}(B^{4})^{\text{rel}} = \{ \alpha \in L_{1}^{2}(B^{4}) \mid i^{*}\alpha = 0 \} \qquad \qquad L_{-1}^{2}(B^{4})^{\text{rel}}$$

d*d is bounded as an operator d*d: L₁²(B⁴) → L₋₁²(B⁴).
d*d is still bounded as d*d: L₁²(B⁴) → L₋₁²(B⁴)^{rel}.
α ↦ (d*dα, i*α) is invertible as an operator
(d*d, i*): L₁²(B⁴)∩ker d* → L₋₁²(B⁴)^{rel}∩range(d*)×L_{1/2}²(∂B⁴).

Projecting to range(d^*)

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

 $(d^*d, i^*) \colon L^2_1(B^4) \cap \ker d^* \to L^2_{-1}(B^4)^{\operatorname{rel}} \cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4).$
Projecting to range(d^*)

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

 $(d^*d,i^*)\colon L^2_1(B^4)\cap \ker d^* \to L^2_{-1}(B^4)^{\operatorname{rel}}\cap \operatorname{range}(d^*)\times L^2_{1/2}(\partial B^4).$

• Problem: $d_A^* F_A$ does not lie in range (d^*) in general.

Projecting to range(d^*)

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

 $(d^*d,i^*)\colon L^2_1(B^4)\cap \ker d^* \to L^2_{-1}(B^4)^{\operatorname{rel}}\cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4).$

- Problem: $d_A^* F_A$ does not lie in range (d^*) in general.
- Solution: Project to range(d*).

Projecting to range(d^*)

We want to invert the map $A \mapsto (d_A^* F_A, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

 $(d^*d,i^*)\colon L^2_1(B^4)\cap \ker d^* \to L^2_{-1}(B^4)^{\operatorname{rel}}\cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4).$

- Problem: $d_A^*F_A$ does not lie in range (d^*) in general.
- Solution: Project to range(d*).
 - Let π_{d^*} be the $L^2(B^4)$ -projection to range (d^*) .

Projecting to range(d^*)

We want to invert the map $A \mapsto (d_{\Delta}^* F_{\Delta}, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

 (d^*d, i^*) : $L^2_1(B^4) \cap \ker d^* \to L^2_{-1}(B^4)^{\operatorname{rel}} \cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4).$

- Problem: $d_A^* F_A$ does not lie in range (d^*) in general.
- Solution: Project to range(d*).

 - Let π_{d*} be the L²(B⁴)-projection to range(d*).
 π_{d*} extends to a bounded operator L²₋₁(B⁴)^{rel} → L²₋₁(B⁴)^{rel}.

(日) (同) (三) (三) (三) (○) (○)

Projecting to range(d^*)

We want to invert the map $A \mapsto (d_{\Delta}^* F_{\Delta}, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

 (d^*d, i^*) : $L^2_1(B^4) \cap \ker d^* \to L^2_{-1}(B^4)^{\operatorname{rel}} \cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4).$

- Problem: $d_{\Delta}^* F_{\Delta}$ does not lie in range (d^*) in general.
- Solution: Project to range(d*).

 - Let π_{d*} be the L²(B⁴)-projection to range(d*).
 π_{d*} extends to a bounded operator L²₋₁(B⁴)^{rel} → L²₋₁(B⁴)^{rel}.

• The linearization of $A \mapsto (\pi_{d^*} d_A^* F_A, i^* A)$ at the trivial connection is $(\pi_{d^*} d^* d\alpha, i^* \alpha) = (d^* d\alpha, i^* \alpha).$

Projecting to range(d^*)

We want to invert the map $A \mapsto (d_{\Delta}^* F_{\Delta}, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

 (d^*d, i^*) : $L^2_1(B^4) \cap \ker d^* \to L^2_{-1}(B^4)^{\operatorname{rel}} \cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4)$.

- Problem: $d_{\Delta}^* F_{\Delta}$ does not lie in range (d^*) in general.
- Solution: Project to range(d*).

 - Let π_{d*} be the L²(B⁴)-projection to range(d*).
 π_{d*} extends to a bounded operator L²₋₁(B⁴)^{rel} → L²₋₁(B⁴)^{rel}.
 - The linearization of $A \mapsto (\pi_{d^*} d_A^* F_A, i^* A)$ at the trivial connection is $(\pi_{d^*} d^* d\alpha, i^* \alpha) = (d^* d\alpha, i^* \alpha).$
- Given A_{∂} small in the $L^2_{1/2}(\partial B^4)$ norm, we can solve

$$\pi_{d^*} d^*_A F_A = 0$$
 on B^4
 $i^* A = A_\partial$ on ∂B^4

Projecting to range(d^*)

We want to invert the map $A \mapsto (d_{\Delta}^* F_{\Delta}, i^* A)$ near the trivial connection, where A is an $L_1^2(B^4)$ connection.

• The linearization $\alpha \mapsto (d^*d\alpha, i^*\alpha)$ is invertible as an operator

 (d^*d, i^*) : $L^2_1(B^4) \cap \ker d^* \to L^2_{-1}(B^4)^{\operatorname{rel}} \cap \operatorname{range}(d^*) \times L^2_{1/2}(\partial B^4)$.

- Problem: $d_A^* F_A$ does not lie in range (d^*) in general.
- Solution: Project to range(d*).

 - Let π_{d*} be the L²(B⁴)-projection to range(d*).
 π_{d*} extends to a bounded operator L²₋₁(B⁴)^{rel} → L²₋₁(B⁴)^{rel}.
 - The linearization of $A \mapsto (\pi_{d^*} d_A^* F_A, i^* A)$ at the trivial connection is $(\pi_{d^*} d^* d\alpha, i^* \alpha) = (d^* d\alpha, i^* \alpha).$
- Given A_{∂} small in the $L^2_{1/2}(\partial B^4)$ norm, we can solve

$$\pi_{d^*} d^*_A F_A = 0$$
 on B^4
 $i^* A = A_\partial$ on ∂B^4

• We also have $d^*a = 0$ and that *a* is small in $L^2_1(B^4)$.

Concluding that the connection minimizes energy

▶ We have found a B = d + b such that $\pi_{d^*} d_B^* F_B = 0$ and b is small in $L_1^2(B^4)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Concluding that the connection minimizes energy

▶ We have found a B = d + b such that $\pi_{d^*} d_B^* F_B = 0$ and b is small in $L_1^2(B^4)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We want to conclude that $d_B^* F_B = 0$.

Concluding that the connection minimizes energy

- ▶ We have found a B = d + b such that $\pi_{d^*} d_B^* F_B = 0$ and b is small in $L_1^2(B^4)$.
- We want to conclude that $d_B^* F_B = 0$.
- ▶ In higher regularity $b \in L_2^2(B^4)$, given $\pi_{d^*}d_B^*F_B = 0$, we can prove an inequality of the form

$$\|d_B^* F_B\|_{L^2(B^4)} \leq C \|b\|_{L^4(B^4)} \|d_B^* F_B\|_{L^2(B^4)}.$$

Concluding that the connection minimizes energy

- ▶ We have found a B = d + b such that $\pi_{d^*} d_B^* F_B = 0$ and b is small in $L_1^2(B^4)$.
- We want to conclude that $d_B^* F_B = 0$.
- ▶ In higher regularity $b \in L_2^2(B^4)$, given $\pi_{d^*}d_B^*F_B = 0$, we can prove an inequality of the form

$$\|d_B^* F_B\|_{L^2(B^4)} \leq C \|b\|_{L^4(B^4)} \|d_B^* F_B\|_{L^2(B^4)}.$$

• Conclude that $d_B^* F_B = 0$ as long as $||b||_{L^4(B^4)}$ is small.

Concluding that the connection minimizes energy

- ▶ We have found a B = d + b such that $\pi_{d^*} d_B^* F_B = 0$ and b is small in $L_1^2(B^4)$.
- We want to conclude that $d_B^* F_B = 0$.
- ▶ In higher regularity $b \in L_2^2(B^4)$, given $\pi_{d^*}d_B^*F_B = 0$, we can prove an inequality of the form

 $\|d_B^* F_B\|_{L^2(B^4)} \leq C \|b\|_{L^4(B^4)} \|d_B^* F_B\|_{L^2(B^4)}.$

• Conclude that $d_B^*F_B = 0$ as long as $||b||_{L^4(B^4)}$ is small.

• This argument fails at $b \in L^2_1(B^4)$ regularity.

Concluding that the connection minimizes energy

- ▶ We have found a B = d + b such that $\pi_{d^*} d_B^* F_B = 0$ and b is small in $L_1^2(B^4)$.
- We want to conclude that $d_B^* F_B = 0$.
- ▶ In higher regularity $b \in L_2^2(B^4)$, given $\pi_{d^*}d_B^*F_B = 0$, we can prove an inequality of the form

$$\|d_B^*F_B\|_{L^2(B^4)} \leq C \|b\|_{L^4(B^4)} \|d_B^*F_B\|_{L^2(B^4)}.$$

- Conclude that $d_B^*F_B = 0$ as long as $\|b\|_{L^4(B^4)}$ is small.
- This argument fails at $b \in L^2_1(B^4)$ regularity.
- Instead, we directly show that B locally minimizes energy and is thus Yang-Mills, using the inequality

$$\|A - B\|_{L^2_1(B^4)}^2 \leq C\left(\|F_A\|_{L^2(B^4)}^2 - \|F_B\|_{L^2(B^4)}^2\right).$$

Concluding that the connection minimizes energy

- ▶ We have found a B = d + b such that $\pi_{d^*} d_B^* F_B = 0$ and b is small in $L_1^2(B^4)$.
- We want to conclude that $d_B^* F_B = 0$.
- ▶ In higher regularity $b \in L_2^2(B^4)$, given $\pi_{d^*}d_B^*F_B = 0$, we can prove an inequality of the form

 $\|d_B^* F_B\|_{L^2(B^4)} \leq C \|b\|_{L^4(B^4)} \|d_B^* F_B\|_{L^2(B^4)}.$

- Conclude that $d_B^*F_B = 0$ as long as $\|b\|_{L^4(B^4)}$ is small.
- This argument fails at $b \in L^2_1(B^4)$ regularity.
- Instead, we directly show that B locally minimizes energy and is thus Yang-Mills, using the inequality

$$\|A - B\|_{L^2_1(B^4)}^2 \leq C\left(\|F_A\|_{L^2(B^4)}^2 - \|F_B\|_{L^2(B^4)}^2\right).$$

► The inequality holds even if B only satisfies π_{d*} d^{*}_BF_B = 0, along with assumptions of small energy, matching on the boundary, and Dirichlet Coulomb gauge.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

> Yang-Mills replacement requires small energy on each ball.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Start with at most $\frac{\epsilon}{2}$ energy here.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

Start with at most $\frac{\epsilon}{2}$ energy here. Bad if ϵ energy gets here.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Replacement could move energy inward.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit. Bubbling

- > Yang-Mills replacement requires small energy on each ball.
- We can guarantee this initially by choosing small enough balls.
- Yang-Mills replacement on one ball might concentrate energy in another ball.

Potential solution: Moving energy costs energy.

$$\left\|\tilde{A} - \tilde{B}\right\|_{L^{2}_{1}(B^{4})}^{2} \leq C\left(\|F_{A}\|_{L^{2}(B^{4})}^{2} - \|F_{B}\|_{L^{2}(B^{4})}^{2}\right).$$

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Limit cycles in the space of connections

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

Differences must go to zero by

$$\left\|\tilde{A}-\tilde{B}\right\|_{L^{2}_{1}(B^{4})}^{2} \leq C\left(\|F_{A}\|_{L^{2}(B^{4})}^{2}-\|F_{B}\|_{L^{2}(B^{4})}^{2}\right).$$

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

Differences must go to zero by

$$\left\| \tilde{A} - \tilde{B} \right\|_{L^{2}_{1}(B^{4})}^{2} \leq C \left(\|F_{A}\|_{L^{2}(B^{4})}^{2} - \|F_{B}\|_{L^{2}(B^{4})}^{2} \right).$$

Not strong enough to guarantee convergence.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

Differences must go to zero by

$$\left\|\tilde{A}-\tilde{B}\right\|_{L^{2}_{1}(B^{4})}^{2} \leq C\left(\|F_{A}\|_{L^{2}(B^{4})}^{2}-\|F_{B}\|_{L^{2}(B^{4})}^{2}\right).$$

Not strong enough to guarantee convergence.

Can still use weak subsequence convergence.
We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

Differences must go to zero by

$$\left\| \tilde{A} - \tilde{B} \right\|_{L^2_1(B^4)}^2 \leq C \left(\|F_A\|_{L^2(B^4)}^2 - \|F_B\|_{L^2(B^4)}^2 \right).$$

- Not strong enough to guarantee convergence.
- Can still use weak subsequence convergence.
 - The limiting global Yang-Mills connection will not depend continuously on the initial connection.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

Differences must go to zero by

$$\left\| \tilde{A} - \tilde{B} \right\|_{L^2_1(B^4)}^2 \leq C \left(\|F_A\|_{L^2(B^4)}^2 - \|F_B\|_{L^2(B^4)}^2 \right).$$

- Not strong enough to guarantee convergence.
- Can still use weak subsequence convergence.
 - The limiting global Yang-Mills connection will not depend continuously on the initial connection.

Łojasiewicz inequality.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

 Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Yang-Mills connections with positive Morse index

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Yang-Mills connections with positive Morse index

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Yang-Mills connections with positive Morse index

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Yang-Mills connections with positive Morse index

minimal Yang-Mills connection

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Yang-Mills connections with positive Morse index

minimal Yang-Mills connection

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Yang-Mills connections with positive Morse index

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.

Yang-Mills connections with positive Morse index

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
- Yang-Mills connections with positive Morse index

(日) (同) (三) (三) (三) (○) (○)

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
- Yang-Mills connections with positive Morse index

(日) (同) (三) (三) (三) (○) (○)

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
- Yang-Mills connections with positive Morse index

 Global Yang-Mills replacement cannot be continuous in the initial data.

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

- Given a compact family of connections, we can choose the sequence of balls uniformly for the entire family.
- Ideally, the limiting Yang-Mills connection will depend continuously on the initial connection.
- Yang-Mills connections with positive Morse index

- Global Yang-Mills replacement cannot be continuous in the initial data.
 - Might be continuous if the initial data is below all non-minimal critical points.

Thank You

Acknowledgments

- Tom Mrowka
- National Science Foundation
- Department of Defense, NDSEG

Selected References

- Tobias H. Colding and William P. Minicozzi, II, Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008), no. 5, 2537–2586. MR 2460871 (2009k:53166)
- Antonella Marini, Dirichlet and Neumann boundary value problems for Yang-Mills connections, Comm. Pure Appl. Math. 45 (1992), no. 8, 1015–1050. MR 1168118 (93k:58059)
 - Karen K. Uhlenbeck, Connections with L^p bounds on curvature, Comm. Math. Phys. 83 (1982), no. 1, 31–42. MR 648356 (83e:53035)

Towards Global Yang-Mills Replacement Bonus Slide

We want to repeat Yang-Mills replacement on balls covering the manifold X to obtain a global Yang-Mills connection in the limit.

Discontinuous normal components

- ► Only the tangential components of the replacement match the original connection on ∂B⁴.
- The normal derivative of the normal component of the new connection is not $L^2(X)$ across ∂B^4 .
- After local Yang-Mills replacement, the global connection is no longer L²₁(X).
- Solution: With a different choice of gauge on a slightly larger ball, the connection becomes L²₁(X).