
Yang-Mills Replacement

Yakov Berchenko-Kogan

Massachusetts Institute of Technology

14 November, 2015



Schwarz Alternating Method

Example

Let f : [0, 1]→ R. We want to make f harmonic while fixing its
boundary values.

0 1

I By locally replacing f with a harmonic function, we get a
global harmonic function in the limit.

I Colding and Minicozzi (2008) locally replace maps
u : Σ2 → M with harmonic maps, with bounds.

I I showed that one can similarly locally replace connections on
4-manifolds with Yang-Mills connections, with bounds.
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Applications

I Colding and Minicozzi used harmonic replacement to prove
finite extinction time of Ricci flow on homotopy 3-spheres.

I They construct a sweep-out of the 3-sphere by immersed
2-spheres and “tighten” each 2-sphere using harmonic
replacement.

I Yang-Mills replacement could relate the topology of the
moduli space of anti-self-dual Yang-Mills connections to the
topology of all connections modulo gauge.

I Taubes, Stable Topology (1989).
I Donaldson invariants.
I Perform Yang-Mills replacement on connections in a compact

family representing a homotopy or homology class.

I Yang-Mills replacement has parallels with Yang-Mills gradient
flow.

I Ability to choose balls gives more control.
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Harmonic Maps and Yang-Mills Connections

Harmonic maps Yang-Mills connections

u : Σ→ M ⊆ RN Connection A on a principal
G -bundle P → X

u is an RN -valued 0-form on
Σ.

Locally, A = d + a, a is a
g-valued 1-form on X .

du is an RN -valued 1-form.
FA = da + 1

2 [a ∧ a] is a
g-valued 2-form.

Energy = 1
2

∫
Σ |du|

2 Energy = 1
2

∫
X |FA|

2

Invariant under conformal
change of metric if dim Σ = 2

Invariant under conformal
change of metric if dimX = 4

(∆u)> = (d∗du)> = 0. d∗AFA = 0.
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The Dirichlet Problem

I To locally replace a connection with a Yang-Mills connection,
we must solve the Dirichlet problem.

I On B4, for “small” boundary data A∂ on ∂B4, we must solve:

d∗AFA = 0 on B4

i∗A = A∂ on ∂B4

I Solved by Marini (1992) for smooth boundary values.

I Our boundary values are L2
1/2(∂B4), and solutions are L2

1(B4).
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Local Yang-Mills Replacement

Theorem (YBK)

I For any L2
1(B4) low-energy connection A, there exists a

low-energy L2
1(B4) Yang-Mills connection B, unique up to

gauge, such that i∗A = i∗B.

I There are Ã and B̃, gauge equivalent by an L2
2(B4) gauge

transformation to A and B, respectively, such that∥∥∥Ã− B̃
∥∥∥2

L2
1(B4)

≤ C
(
‖FA‖2

L2(B4) − ‖FB‖
2
L2(B4)

)
.

I The linear interpolation between A and B has monotone
decreasing energy.

I Equality if and only if A is already Yang-Mills.
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I There are Ã and B̃, gauge equivalent by an L2
2(B4) gauge

transformation to A and B, respectively, such that∥∥∥Ã− B̃
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Linearization
To solve the Dirichlet problem, we want to invert the map
A 7→ (d∗AFA, i

∗A) near the trivial connection using the inverse
function theorem.

Harmonic maps Yang-Mills connections

u : B2 → M ⊆ RN Connection A = d + a on a
principal G -bundle P → B4

u is an RN -valued 0-form. a is a g-valued 1-form.

(d∗du)> d∗AFA

Linearize near u = constant. Linearize near a = 0.

d∗dφ

= ∆φ

d∗dα

6= ∆α = d∗dα + dd∗α

φ 7→ (d∗dφ, i∗φ) is invertible.
α 7→ (d∗dα, i∗α) is not

invertible.

Solution: Can get d∗α = 0 by
choosing a good gauge.
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choosing a good gauge.
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Gauge Fixing

Gauge transformations, that is, automorphisms of P → B4, act on
connections on B4.

I Energy, and hence the Yang-Mills equations, are invariant
under gauge transformations.

Theorem (Dirichlet Uhlenbeck gauge fixing, YBK)

Any low-energy L2
1(B4) connection A is gauge equivalent to an

L2
1(B4) connection Ã = d + ã such that:

I Ã is in Dirichlet Coulomb gauge, that is,
I d∗ã = 0 on B4, and
I d∗

∂B4 i∗ã = 0 on ∂B4.

I ‖ã‖L2
1(B4) ≤ C ‖FA‖L2(B4).

The boundary condition d∗∂B4 i
∗ã = 0 is preserved under gauge

transformations satisfying Dirichlet boundary conditions.
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Solving the Dirichlet Problem
We want to invert the map A 7→ (d∗AFA, i

∗A) near the trivial
connection, where A is an L2

1(B4) connection.

I The linearization is α 7→ (d∗dα, i∗α), which is not invertible.

I Gauge fixing lets us assume d∗α = 0.

I The linearization is now equal to α 7→ (∆α, i∗α).

I α 7→ (∆α, i∗α) is still not invertible on 1-forms.

I Dirichlet boundary conditions for the Hodge Laplacian require
specifying i∗α and i∗d∗α.

I α 7→ (∆α, i∗α, i∗d∗α) is invertible, but only for α ∈ L2
2(B4).

I Restricting to ker d∗ gives an isomorphism

(d∗d , i∗) : L2
2(B4)∩ ker d∗ → L2(B4)∩ range(d∗)× L2

3/2(∂B4).

I But in the regularity we want,

(d∗d , i∗) : L2
1(B4)∩ker d∗ → L2

−1(B4)∩ range(d∗)×L2
1/2(∂B4)

is not injective.

I Solution: Use a target space slightly larger than L2
−1(B4).
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Solving the Dirichlet Problem
Choosing the Target Banach Space

We want to invert the map A 7→ (d∗AFA, i
∗A) near the trivial

connection, where A is an L2
1(B4) connection.

I The linearization is α 7→ (d∗dα, i∗α).

Definition
Dual

L2
1(B4)

0
= {α ∈ L2

1(B4) | α|∂B4 = 0} L2
−1(B4)

L2
1(B4)

rel
= {α ∈ L2

1(B4) | i∗α = 0} L2
−1(B4)

rel

I d∗d is bounded as an operator d∗d : L2
1(B4)→ L2

−1(B4).

I d∗d is still bounded as d∗d : L2
1(B4)→ L2

−1(B4)
rel

.
I α 7→ (d∗dα, i∗α) is invertible as an operator

(d∗d , i∗) : L2
1(B4)∩ker d∗ → L2

−1(B4)
rel∩range(d∗)×L2

1/2(∂B4).
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Solving the Dirichlet Problem
Projecting to range(d∗)

We want to invert the map A 7→ (d∗AFA, i
∗A) near the trivial

connection, where A is an L2
1(B4) connection.

I The linearization α 7→ (d∗dα, i∗α) is invertible as an operator

(d∗d , i∗) : L2
1(B4)∩ker d∗ → L2

−1(B4)
rel∩range(d∗)×L2

1/2(∂B4).

I Problem: d∗AFA does not lie in range(d∗) in general.
I Solution: Project to range(d∗).

I Let πd∗ be the L2(B4)-projection to range(d∗).
I πd∗ extends to a bounded operator L2

−1(B4)
rel → L2

−1(B4)
rel

.
I The linearization of A 7→ (πd∗d∗

AFA, i
∗A) at the trivial

connection is (πd∗d∗dα, i∗α) = (d∗dα, i∗α).

I Given A∂ small in the L2
1/2(∂B4) norm, we can solve

πd∗d∗AFA = 0 on B4

i∗A = A∂ on ∂B4

I We also have d∗a = 0 and that a is small in L2
1(B4).
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Solving the Dirichlet Problem
Concluding that the connection minimizes energy

I We have found a B = d + b such that πd∗d∗BFB = 0 and b is
small in L2

1(B4).

I We want to conclude that d∗BFB = 0.
I In higher regularity b ∈ L2

2(B4), given πd∗d∗BFB = 0, we can
prove an inequality of the form

‖d∗BFB‖L2(B4) ≤ C ‖b‖L4(B4) ‖d
∗
BFB‖L2(B4) .

I Conclude that d∗
BFB = 0 as long as ‖b‖L4(B4) is small.

I This argument fails at b ∈ L2
1(B4) regularity.

I Instead, we directly show that B locally minimizes energy and
is thus Yang-Mills, using the inequality

‖A− B‖2
L2

1(B4) ≤ C
(
‖FA‖2

L2(B4) − ‖FB‖
2
L2(B4)

)
.

I The inequality holds even if B only satisfies πd∗d∗
BFB = 0,

along with assumptions of small energy, matching on the
boundary, and Dirichlet Coulomb gauge.
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Towards Global Yang-Mills Replacement
We want to repeat Yang-Mills replacement on balls covering the
manifold X to obtain a global Yang-Mills connection in the limit.

Bubbling

I Yang-Mills replacement requires small energy on each ball.

I We can guarantee this initially by choosing small enough balls.

I Yang-Mills replacement on one ball might concentrate energy
in another ball.

Start with at most
ε
2 energy here.

Bad if ε energy
gets here.

Replacement could
move energy inward.

I Potential solution: Moving energy costs energy.∥∥∥Ã− B̃
∥∥∥2

L2
1(B4)

≤ C
(
‖FA‖2

L2(B4) − ‖FB‖
2
L2(B4)

)
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∥∥∥2

L2
1(B4)

≤ C
(
‖FA‖2

L2(B4) − ‖FB‖
2
L2(B4)

)
.



Towards Global Yang-Mills Replacement
We want to repeat Yang-Mills replacement on balls covering the
manifold X to obtain a global Yang-Mills connection in the limit.

Limit cycles in the space of connections

I Differences must go to zero by∥∥∥Ã− B̃
∥∥∥2

L2
1(B4)

≤ C
(
‖FA‖2

L2(B4) − ‖FB‖
2
L2(B4)

)
.

I Not strong enough to guarantee convergence.

I Can still use weak subsequence convergence.

I The limiting global Yang-Mills connection will not depend
continuously on the initial connection.

I  Lojasiewicz inequality.
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Towards Global Yang-Mills Replacement
Bonus Slide

We want to repeat Yang-Mills replacement on balls covering the
manifold X to obtain a global Yang-Mills connection in the limit.

Discontinuous normal components

I Only the tangential components of the replacement match the
original connection on ∂B4.

I The normal derivative of the normal component of the new
connection is not L2(X ) across ∂B4.

I After local Yang-Mills replacement, the global connection is
no longer L2

1(X ).

I Solution: With a different choice of gauge on a slightly larger
ball, the connection becomes L2

1(X ).


