Uncovering the Lagrangian of a system from discrete observations

Yakov Berchenko-Kogan

Massachusetts Institute of Technology

7 January, 2012

Background

The Problem

Given discrete measurements of a Lagrangian system, can we recover the Lagrangian?

Background

The Problem

Given discrete measurements of a Lagrangian system, can we recover the Lagrangian?

The Discrete Euler-Lagrange Equations

Given a system with Lagrangian $L(x, v)$, we can discretize the action with time step τ by summing the discrete Lagrangian

$$
L_{d}(x, y)=\tau \cdot L\left(\frac{x+y}{2}, \frac{y-x}{\tau}\right) .
$$

Background

The Problem

Given discrete measurements of a Lagrangian system, can we recover the Lagrangian?

The Discrete Euler-Lagrange Equations

Given a system with Lagrangian $L(x, v)$, we can discretize the action with time step τ by summing the discrete Lagrangian

$$
L_{d}(x, y)=\tau \cdot L\left(\frac{x+y}{2}, \frac{y-x}{\tau}\right) .
$$

The principle of stationary action yields the discrete Euler-Lagrange equations

$$
D_{2} L_{d}(x, y)+D_{1} L_{d}(y, z)=0
$$

relating any three consecutive points x, y, and z on a discrete trajectory.

Recovering the Discrete Lagrangian

The Problem

Given a pair of points $\left(x_{0}, y_{0}\right)$, we would like to use data points on trajectories that pass nearby to estimate the Taylor expansion of the discrete Lagrangian L_{d} at $\left(x_{0}, y_{0}\right)$.

Recovering the Discrete Lagrangian

The Problem

Given a pair of points $\left(x_{0}, y_{0}\right)$, we would like to use data points on trajectories that pass nearby to estimate the Taylor expansion of the discrete Lagrangian L_{d} at $\left(x_{0}, y_{0}\right)$.

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the same equations of motion.

Recovering the Discrete Lagrangian

The Problem

Given a pair of points $\left(x_{0}, y_{0}\right)$, we would like to use data points on trajectories that pass nearby to estimate the Taylor expansion of the discrete Lagrangian L_{d} at $\left(x_{0}, y_{0}\right)$.

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the same equations of motion.

- For example, if $L(x, y)$ is a discrete Lagrangian, then the Lagrangian

$$
L^{\prime}(x, y)=\alpha L(x, y)+\beta\left(y^{2}-x^{2}\right)+\gamma(y-x)+\delta
$$

produces the same discrete Euler-Lagrange equations, for any choice of α, β, γ, and δ.

Recovering the Discrete Lagrangian

The Problem

Given a pair of points $\left(x_{0}, y_{0}\right)$, we would like to use data points on trajectories that pass nearby to estimate the Taylor expansion of the discrete Lagrangian L_{d} at $\left(x_{0}, y_{0}\right)$.

A Caveat

Two Lagrangians might be equivalent in the sense that they yield the same equations of motion.

- For example, if $L(x, y)$ is a discrete Lagrangian, then the Lagrangian

$$
L^{\prime}(x, y)=\alpha L(x, y)+\beta\left(y^{2}-x^{2}\right)+\gamma(y-x)+\delta
$$

produces the same discrete Euler-Lagrange equations, for any choice of α, β, γ, and δ.

- Trajectory data can't distinguish between equivalent Lagrangians, nor would it be useful to do so.

A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian

Given a pair of points $\left(x_{0}, y_{0}\right)$, we approximate L_{d} with its second-degree Taylor polynomial at $\left(x_{0}, y_{0}\right)$.

A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian

Given a pair of points $\left(x_{0}, y_{0}\right)$, we approximate L_{d} with its second-degree Taylor polynomial at $\left(x_{0}, y_{0}\right)$. We rewrite it in the form
$L_{d} \approx a(x-p)^{2}+2 b(x-p)(y-p)+c(y-p)^{2}+d_{p}(x-p)+e_{p}(y-p)+f_{p}$, where $p=\left(x_{0}+y_{0}\right) / 2$.

A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian

Given a pair of points $\left(x_{0}, y_{0}\right)$, we approximate L_{d} with its second-degree Taylor polynomial at $\left(x_{0}, y_{0}\right)$. We rewrite it in the form
$L_{d} \approx a(x-p)^{2}+2 b(x-p)(y-p)+c(y-p)^{2}+d_{p}(x-p)+e_{p}(y-p)+f_{p}$, where $p=\left(x_{0}+y_{0}\right) / 2$. The expression in higher dimensions is analogous.

A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian

Given a pair of points $\left(x_{0}, y_{0}\right)$, we approximate L_{d} with its second-degree Taylor polynomial at $\left(x_{0}, y_{0}\right)$. We rewrite it in the form
$L_{d} \approx a(x-p)^{2}+2 b(x-p)(y-p)+c(y-p)^{2}+d_{p}(x-p)+e_{p}(y-p)+f_{p}$, where $p=\left(x_{0}+y_{0}\right) / 2$. The expression in higher dimensions is analogous.

Discrete Euler-Lagrange Equations

For three consecutive points x, y, and z on a trajectory, we can apply the discrete Euler-Lagrange equations $D_{2} L_{d}(x, y)+D_{1} L_{d}(y, z)=0$ to find

$$
0 \approx 2(a+c)(y-p)+2 b(x-p+z-p)+\left(d_{p}+e_{p}\right)
$$

A Second-Order Approximation

Taylor Expansion of the Discrete Lagrangian

Given a pair of points $\left(x_{0}, y_{0}\right)$, we approximate L_{d} with its second-degree Taylor polynomial at $\left(x_{0}, y_{0}\right)$. We rewrite it in the form
$L_{d} \approx a(x-p)^{2}+2 b(x-p)(y-p)+c(y-p)^{2}+d_{p}(x-p)+e_{p}(y-p)+f_{p}$, where $p=\left(x_{0}+y_{0}\right) / 2$. The expression in higher dimensions is analogous.

Discrete Euler-Lagrange Equations

For three consecutive points x, y, and z on a trajectory, we can apply the discrete Euler-Lagrange equations $D_{2} L_{d}(x, y)+D_{1} L_{d}(y, z)=0$ to find

$$
0 \approx 2(a+c)(y-p)+2 b(x-p+z-p)+\left(d_{p}+e_{p}\right)
$$

We will use nearby triplets (x, y, z) from our trajectory measurements to estimate $a+c, b$, and $d_{p}+e_{p}$.

New Parameters for the Lagrangian

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.

New Parameters for the Lagrangian

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.
- The parameter $d_{p}+e_{p}$ has different units from $a+c$ and b.

New Parameters for the Lagrangian

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.
- The parameter $d_{p}+e_{p}$ has different units from $a+c$ and b.
- Taylor approximations of the discrete Euler-Lagrange equations suggest that an appropriate rescaling of the parameters at $\left(x_{0}, y_{0}\right)$ is

$$
A:=(a+c)\left\|y_{0}-x_{0}\right\|, \quad B:=2 b\left\|y_{0}-x_{0}\right\|, \quad D:=d_{p}+e_{p} .
$$

New Parameters for the Lagrangian

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.
- The parameter $d_{p}+e_{p}$ has different units from $a+c$ and b.
- Taylor approximations of the discrete Euler-Lagrange equations suggest that an appropriate rescaling of the parameters at $\left(x_{0}, y_{0}\right)$ is

$$
A:=(a+c)\left\|y_{0}-x_{0}\right\|, \quad B:=2 b\left\|y_{0}-x_{0}\right\|, \quad D:=d_{p}+e_{p} .
$$

New Parameters for the Lagrangian

Scaling the Parameters

- In order to estimate the parameters using many data points, we need to assign weights to the parameters appropriately.
- The parameter $d_{p}+e_{p}$ has different units from $a+c$ and b.
- Taylor approximations of the discrete Euler-Lagrange equations suggest that an appropriate rescaling of the parameters at $\left(x_{0}, y_{0}\right)$ is

$$
A:=(a+c)\left\|y_{0}-x_{0}\right\|, \quad B:=2 b\left\|y_{0}-x_{0}\right\|, \quad D:=d_{p}+e_{p}
$$

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$
0 \approx A\left(2 y-x_{0}-y_{0}\right)+B\left(x+z-x_{0}-y_{0}\right)+D\left\|y_{0}-x_{0}\right\| .
$$

Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$
0 \approx A\left(2 y-x_{0}-y_{0}\right)+B\left(x+z-x_{0}-y_{0}\right)+D\left\|y_{0}-x_{0}\right\| .
$$

Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$
0 \approx A\left(2 y-x_{0}-y_{0}\right)+B\left(x+z-x_{0}-y_{0}\right)+D\left\|y_{0}-x_{0}\right\| .
$$

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets $\left(x_{i}, y_{i}, z_{i}\right)$, we estimate A, B, and D up to scaling at a point $\left(x_{0}, y_{0}\right)$ as follows.

Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$
0 \approx A\left(2 y-x_{0}-y_{0}\right)+B\left(x+z-x_{0}-y_{0}\right)+D\left\|y_{0}-x_{0}\right\| .
$$

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets $\left(x_{i}, y_{i}, z_{i}\right)$, we estimate A, B, and D up to scaling at a point $\left(x_{0}, y_{0}\right)$ as follows.

- Construct a matrix M whose rows are

$$
w_{i} \cdot\left(2 y_{i}-\left(x_{0}+y_{0}\right) \quad x_{i}+z_{i}-\left(x_{0}+y_{0}\right) \quad\left\|y_{0}-x_{0}\right\|\right) .
$$

Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$
0 \approx A\left(2 y-x_{0}-y_{0}\right)+B\left(x+z-x_{0}-y_{0}\right)+D\left\|y_{0}-x_{0}\right\| .
$$

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets $\left(x_{i}, y_{i}, z_{i}\right)$, we estimate A, B, and D up to scaling at a point $\left(x_{0}, y_{0}\right)$ as follows.

- Construct a matrix M whose rows are

$$
w_{i} \cdot\left(2 y_{i}-\left(x_{0}+y_{0}\right) x_{i}+z_{i}-\left(x_{0}+y_{0}\right) \quad\left\|y_{0}-x_{0}\right\|\right) .
$$

- For the correct values of the parameters, we will have $M\left(\begin{array}{c}A \\ B \\ D\end{array}\right) \approx 0$.

Estimating the Parameters

Discrete Euler-Lagrange Equations

For three consecutive points (x, y, z) on a trajectory, we have

$$
0 \approx A\left(2 y-x_{0}-y_{0}\right)+B\left(x+z-x_{0}-y_{0}\right)+D\left\|y_{0}-x_{0}\right\| .
$$

Estimating Lagrangian Parameters with Several Data Points

Given data of consecutive triplets $\left(x_{i}, y_{i}, z_{i}\right)$, we estimate A, B, and D up to scaling at a point $\left(x_{0}, y_{0}\right)$ as follows.

- Construct a matrix M whose rows are

$$
w_{i} \cdot\left(2 y_{i}-\left(x_{0}+y_{0}\right) \quad x_{i}+z_{i}-\left(x_{0}+y_{0}\right) \quad\left\|y_{0}-x_{0}\right\|\right) .
$$

- For the correct values of the parameters, we will have $M\left(\begin{array}{l}A \\ B \\ D\end{array}\right) \approx 0$.
- Estimate A, B, and D by the eigenvector corresponding to the least eigenvalue of $M^{T} M$.

Assigning Weights to the Data Points

The matrix of coefficients

The i th row of M is

$$
w_{i} \cdot\left(2 y_{i}-\left(x_{0}+y_{0}\right) \quad x_{i}+z_{i}-\left(x_{0}+y_{0}\right) \quad\left\|y_{0}-x_{0}\right\|\right) .
$$

Assigning Weights to the Data Points

The matrix of coefficients

The ith row of M is

$$
w_{i} \cdot\left(2 y_{i}-\left(x_{0}+y_{0}\right) \quad x_{i}+z_{i}-\left(x_{0}+y_{0}\right) \quad\left\|y_{0}-x_{0}\right\|\right) .
$$

Distance

We define the distance bewteen $\left(x_{0}, y_{0}\right)$ and (x, y) to be

$$
\delta\left(\left(x_{0}, y_{0}\right),(x, y)\right)^{2}=\left\|\frac{x+y}{2}-\frac{x_{0}+y_{0}}{2}\right\|^{2}+\tau_{s}^{2}\left\|\frac{y-x}{\tau}-\frac{y_{0}-x_{0}}{\tau}\right\|^{2},
$$

where τ_{s} is a parameter and τ is the timestep.

Assigning Weights to the Data Points

The matrix of coefficients

The ith row of M is

$$
w_{i} \cdot\left(2 y_{i}-\left(x_{0}+y_{0}\right) \quad x_{i}+z_{i}-\left(x_{0}+y_{0}\right) \quad\left\|y_{0}-x_{0}\right\|\right) .
$$

Distance

We define the distance bewteen $\left(x_{0}, y_{0}\right)$ and (x, y) to be

$$
\delta\left(\left(x_{0}, y_{0}\right),(x, y)\right)^{2}=\left\|\frac{x+y}{2}-\frac{x_{0}+y_{0}}{2}\right\|^{2}+\tau_{s}^{2}\left\|\frac{y-x}{\tau}-\frac{y_{0}-x_{0}}{\tau}\right\|^{2},
$$

where τ_{s} is a parameter and τ is the timestep.

Weights

$$
w_{i}=\exp \left(-\frac{1}{2 \sigma^{2}}\left(\delta\left(\left(x_{0}, y_{0}\right),\left(x_{i}, y_{i}\right)\right)^{2}+\delta\left(\left(x_{0}, y_{0}\right),\left(y_{i}, z_{i}\right)\right)^{2}\right)\right)
$$

where σ is another parameter.

The Simple Pendulum

The Lagrangian

$$
L_{d}(x, y)=\tau\left(\frac{1}{2}\left(\frac{y-x}{\tau}\right)^{2}-\left(1-\cos \left(\frac{x+y}{2}\right)\right)\right)
$$

The Simple Pendulum

The Lagrangian

$$
L_{d}(x, y)=\tau\left(\frac{1}{2}\left(\frac{y-x}{\tau}\right)^{2}-\left(1-\cos \left(\frac{x+y}{2}\right)\right)\right)
$$

True Values of Lagrangian Parameters

Using a Taylor approximation to the Lagrangian, we find that

$$
\frac{B}{A}=-\frac{4+\tau^{2} \cos \left(\frac{x_{0}+y_{0}}{2}\right)}{4-\tau^{2} \cos \left(\frac{x_{0}+y_{0}}{2}\right)}, \quad \frac{D}{A}=-\frac{4 \tau^{2}}{\left\|y_{0}-x_{0}\right\|} \cdot \frac{\sin \left(\frac{x_{0}+y_{0}}{2}\right)}{4-\tau^{2} \cos \left(\frac{x_{0}+y_{0}}{2}\right)} .
$$

The Simple Pendulum

The Lagrangian

$$
L_{d}(x, y)=\tau\left(\frac{1}{2}\left(\frac{y-x}{\tau}\right)^{2}-\left(1-\cos \left(\frac{x+y}{2}\right)\right)\right)
$$

True Values of Lagrangian Parameters

Using a Taylor approximation to the Lagrangian, we find that

$$
\frac{B}{A}=-\frac{4+\tau^{2} \cos \left(\frac{x_{0}+y_{0}}{2}\right)}{4-\tau^{2} \cos \left(\frac{x_{0}+y_{0}}{2}\right)}, \quad \frac{D}{A}=-\frac{4 \tau^{2}}{\left\|y_{0}-x_{0}\right\|} \cdot \frac{\sin \left(\frac{x_{0}+y_{0}}{2}\right)}{4-\tau^{2} \cos \left(\frac{x_{0}+y_{0}}{2}\right)} .
$$

Parameters Computed From Trajectories

I computed the parameters from the trajectories with Matlab. The graphs of $\frac{B}{A}+1$ and $\frac{D}{A}\left\|y_{0}-x_{0}\right\|$ are on the following slides.

What Next?

Future Directions

What Next?

Future Directions

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.

What Next?

Future Directions

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_{s} and σ.

What Next?

Future Directions

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_{s} and σ.
- Try adding other kinds of noise to the system.

What Next?

Future Directions

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_{s} and σ.
- Try adding other kinds of noise to the system.
- Try the method with real data.

What Next?

Future Directions

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_{s} and σ.
- Try adding other kinds of noise to the system.
- Try the method with real data.

What Next?

Future Directions

- Recover the Lagrangian from data of several trajectories, and then use it to predict new trajectories.
- Investigate the best choices for τ_{s} and σ.
- Try adding other kinds of noise to the system.
- Try the method with real data.

Evan S. Gawlik, Patrick Mullen, Dmitry Pavlov, Jerrold E. Marsden, and Mathieu Desbrun, Geometric, variational discretization of continuum theories, 2010.

- Ari Stern and Mathieu Desbrun, Discrete geometric mechanics for variational time integrators, Discrete Differential Geometry: An Applied Introduction, 2006, pp. 75-80.

