# Variational Numerical Methods in Geometric PDE 

## Yakov Berchenko-Kogan

Washington University in St. Louis

March 11, 2019

## Preserving conservation laws

- Many physical systems have conserved quantities.
- energy, angular momentum, electric charge

Figure: Rigid body dynamics (International Space Station)

- There is no guarantee that these conservation laws will continue to hold when we numerically simulate the system.
- energy gain or loss (numerical dissipation)
- Goal: create numerical methods that preserve conservation laws.


## Toy example: the harmonic oscillator

Figure: A simple harmonic oscillator. Video credit: Wikipedia

## Equations of Motion

$$
\ddot{x}=-x .
$$

Conservation of energy
$\frac{1}{2}\left(\dot{x}^{2}+x^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## The harmonic oscillator: numerical conservation



Figure: Phase space diagram for the harmonic oscillator. $\ddot{x}=\dot{y}=-x$. The energy $\frac{1}{2}\left(x^{2}+\dot{x}^{2}\right)$ is conserved.

## Variational formulations

A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

## Example

## Variational formulations

A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

## Example

- Seek solutions to $\ddot{q}=0$ among parametrized curves $q:[0, T] \rightarrow \mathbb{R}^{3}$.


## Variational formulations

A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

## Example

- Seek solutions to $\ddot{q}=0$ among parametrized curves $q:[0, T] \rightarrow \mathbb{R}^{3}$.
- Consider the functional

$$
\mathfrak{S}(q)=\int_{0}^{T} \frac{1}{2}\|\dot{q}\|^{2} d t
$$

## Variational formulations

A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

## Example

- Seek solutions to $\ddot{q}=0$ among parametrized curves $q:[0, T] \rightarrow \mathbb{R}^{3}$.
- Consider the functional

$$
\mathfrak{S}(q)=\int_{0}^{T} \frac{1}{2}\|\dot{q}\|^{2} d t
$$

- Fix endpoints $q_{0}$ and $q_{T}$.


## Variational formulations

A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

## Example

- Seek solutions to $\ddot{q}=0$ among parametrized curves $q:[0, T] \rightarrow \mathbb{R}^{3}$.
- Consider the functional

$$
\mathfrak{S}(q)=\int_{0}^{T} \frac{1}{2}\|\dot{q}\|^{2} d t
$$

- Fix endpoints $q_{0}$ and $q_{T}$.
- Consider curves $q:[0, T] \rightarrow \mathbb{R}^{3}$ with $q(0)=q_{0}$ and $q(T)=q_{T}$.


## Variational formulations

A variational formulation of a problem is a way of expressing its solutions as the critical points of a functional.

## Example

- Seek solutions to $\ddot{q}=0$ among parametrized curves $q:[0, T] \rightarrow \mathbb{R}^{3}$.
- Consider the functional

$$
\mathfrak{S}(q)=\int_{0}^{T} \frac{1}{2}\|\dot{q}\|^{2} d t
$$

- Fix endpoints $q_{0}$ and $q_{T}$.
- Consider curves $q:[0, T] \rightarrow \mathbb{R}^{3}$ with $q(0)=q_{0}$ and $q(T)=q_{T}$.
- The critical point $q$ of $\mathfrak{S}$ is a solution to $\ddot{q}=0$.


## Variational formulations

## Example

Geodesics in $(M, g)$ are critical points $q:[0, T] \rightarrow M$ of

$$
\mathfrak{S}(q)=\int_{0}^{T} \frac{1}{2}\|\dot{q}\|_{g}^{2} d t
$$

with fixed endpoints.

## Variational formulations

## Example

Geodesics in $(M, g)$ are critical points $q:[0, T] \rightarrow M$ of

$$
\mathfrak{S}(q)=\int_{0}^{T} \frac{1}{2}\|\dot{q}\|_{g}^{2} d t
$$

with fixed endpoints.

## Example

Harmonic oscillator trajectories $\ddot{x}=-x$ are critical points
$x:[0, T] \rightarrow \mathbb{R}$ of

$$
\mathfrak{S}(x)=\int_{0}^{T} \frac{1}{2}\left(|\dot{x}|^{2}-|x|^{2}\right)
$$

with fixed endpoints.

## Variational integrators for ODEs

Numerically solving ODEs using a variational formulation

## Variational integrators for ODEs

Numerically solving ODEs using a variational formulation

- Say we seek curves $q:[0, T] \rightarrow M$ that are critical points of a functional $\mathfrak{S}(q)$.


## Variational integrators for ODEs

Numerically solving ODEs using a variational formulation
－Say we seek curves $q:[0, T] \rightarrow M$ that are critical points of a functional $\mathfrak{S}(q)$ ．
－Consider points $q_{0}, q_{1}, \ldots, q_{N}$ on $q$ ．We call such a sequence of points a discrete curve．


Figure：A discrete curve（red）on a continuous curve（blue）．

## Variational integrators for ODEs

## Numerically solving ODEs using a variational formulation

- Say we seek curves $q:[0, T] \rightarrow M$ that are critical points of a functional $\mathfrak{S}(q)$.
- Consider points $q_{0}, q_{1}, \ldots, q_{N}$ on $q$. We call such a sequence of points a discrete curve.


Figure: A discrete curve (red) on a continuous curve (blue).

- Construct a functional $\mathfrak{S}_{d}:\{$ discrete curves $\} \rightarrow \mathbb{R}$ such that

$$
\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right) \approx \mathfrak{S}(q)
$$

## Variational integrators for ODEs

## Numerically solving ODEs using a variational formulation

## Variational integrators for ODEs

## Numerically solving ODEs using a variational formulation

- Construct a functional $\mathfrak{S}_{d}:\{$ discrete curves $\} \rightarrow \mathbb{R}$ such that

$$
\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right) \approx \mathfrak{S}(q) .
$$

## Variational integrators for ODEs

## Numerically solving ODEs using a variational formulation

- Construct a functional $\mathfrak{S}_{d}:\{$ discrete curves $\} \rightarrow \mathbb{R}$ such that

$$
\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right) \approx \mathfrak{S}(q)
$$

- Numerically solve a finite system of equations to find the critical discrete curves for $\mathfrak{S}_{d}$.


## Variational integrators for ODEs

## Numerically solving ODEs using a variational formulation

- Construct a functional $\mathfrak{S}_{d}:\{$ discrete curves $\} \rightarrow \mathbb{R}$ such that

$$
\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right) \approx \mathfrak{S}(q)
$$

- Numerically solve a finite system of equations to find the critical discrete curves for $\mathfrak{S}_{d}$.
- The discrete curves that are critical points of $\mathfrak{S}_{d}$ are numerical approximations for the continuous curves that are critical points of $\mathfrak{S}$.


## Variational integrators for ODEs

## Numerically solving ODEs using a variational formulation

- Construct a functional $\mathfrak{S}_{d}:\{$ discrete curves $\} \rightarrow \mathbb{R}$ such that

$$
\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right) \approx \mathfrak{S}(q)
$$

- Numerically solve a finite system of equations to find the critical discrete curves for $\mathfrak{S}_{d}$.
- The discrete curves that are critical points of $\mathfrak{S}_{d}$ are numerical approximations for the continuous curves that are critical points of $\mathfrak{S}$.
- This numerical method preserves conservation laws.


## Variational integrators for ODEs

## Numerically solving ODEs using a variational formulation

- Construct a functional $\mathfrak{S}_{d}:\{$ discrete curves $\} \rightarrow \mathbb{R}$ such that

$$
\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right) \approx \mathfrak{S}(q)
$$

- Numerically solve a finite system of equations to find the critical discrete curves for $\mathfrak{S}_{d}$.
- The discrete curves that are critical points of $\mathfrak{S}_{d}$ are numerical approximations for the continuous curves that are critical points of $\mathfrak{S}$.
- This numerical method preserves conservation laws.
- discrete Noether's theorem


## Variational integrators for ODEs

## Numerically solving ODEs using a variational formulation

- Construct a functional $\mathfrak{S}_{d}:\{$ discrete curves $\} \rightarrow \mathbb{R}$ such that

$$
\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right) \approx \mathfrak{S}(q)
$$

- Numerically solve a finite system of equations to find the critical discrete curves for $\mathfrak{S}_{d}$.
- The discrete curves that are critical points of $\mathfrak{S}_{d}$ are numerical approximations for the continuous curves that are critical points of $\mathfrak{S}$.
- This numerical method preserves conservation laws.
- discrete Noether's theorem
- See Marsden and West, Discrete Mechanics and Variational Integrators, 2001.


## Variational formulations for PDEs: Poisson's equation

## Standard PDE formulation

Given $f: \Omega \rightarrow \mathbb{R}$, seek a solution $v$ to

$$
\Delta v+f=0 \text { on } \Omega, \quad v=0 \text { on } \partial \Omega .
$$

## Variational formulations for PDEs: Poisson's equation

## Standard PDE formulation

Given $f: \Omega \rightarrow \mathbb{R}$, seek a solution $v$ to

$$
\Delta v+f=0 \text { on } \Omega, \quad v=0 \text { on } \partial \Omega .
$$

## Variational formulation

Seek a critical point $v$ of $E$.

$$
E(v)=\int_{\Omega}\left(\frac{1}{2}\|\nabla v\|^{2}-f v\right), \quad v=0 \text { on } \partial \Omega .
$$

## Variational formulations for PDEs: Poisson's equation

## Standard PDE formulation

Given $f: \Omega \rightarrow \mathbb{R}$, seek a solution $v$ to

$$
\Delta v+f=0 \text { on } \Omega, \quad v=0 \text { on } \partial \Omega .
$$

## Variational formulation

Seek a critical point $v$ of $E$.

$$
E(v)=\int_{\Omega}\left(\frac{1}{2}\|\nabla v\|^{2}-f v\right), \quad v=0 \text { on } \partial \Omega .
$$

## Weak formulation

Seek a $v$ for which the equation holds for all $w$.

$$
\int_{\Omega}(\langle\nabla v, \nabla w\rangle-f w)=0, \quad v=w=0 \text { on } \partial \Omega
$$

## The Galerkin method

## Variational integrator for ODEs

## The Galerkin method

## Variational integrator for ODEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.


## The Galerkin method

## Variational integrator for ODEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical curves of $\mathfrak{S}(q)$ with critical discrete curves of $\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right)$.


## The Galerkin method

## Variational integrator for ODEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical curves of $\mathfrak{S}(q)$ with critical discrete curves of $\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right)$.


## The Galerkin method for PDEs

## The Galerkin method

## Variational integrator for ODEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical curves of $\mathfrak{S}(q)$ with critical discrete curves of $\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right)$.


## The Galerkin method for PDEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.


## The Galerkin method

## Variational integrator for ODEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical curves of $\mathfrak{S}(q)$ with critical discrete curves of $\mathfrak{S}_{d}\left(q_{0}, \ldots, q_{N}\right)$.


## The Galerkin method for PDEs

- converts an infinite-dimensional variational problem to a finite-dimensional variational problem.
- approximates critical functions $v$ with critical functions $v_{h}$ coming from a finite-dimensional space.


## The Galerkin method for Poisson's equation

- Let $V$ denote the space of functions $v: \Omega \rightarrow \mathbb{R}$.


## The Galerkin method for Poisson's equation

- Let $V$ denote the space of functions $v: \Omega \rightarrow \mathbb{R}$.
- For example, $V=\left\{v \in L^{2}(\Omega)\left|\nabla v \in L^{2}(\Omega), v\right|_{\partial \Omega}=0\right\}$.


## The Galerkin method for Poisson's equation

## Variational formulation

Seek a critical point $v \in V$ of $E$.

$$
E(v)=\int_{\Omega}\left(\frac{1}{2}\|\nabla v\|^{2}-f v\right) .
$$

## Weak formulation

Seek a $v \in V$ for which the equation holds for all $w \in V$.

$$
\int_{\Omega}(\langle\nabla v, \nabla w\rangle-f w)=0 .
$$

- Let $V$ denote the space of functions $v: \Omega \rightarrow \mathbb{R}$.
- For example, $V=\left\{v \in L^{2}(\Omega)\left|\nabla v \in L^{2}(\Omega), v\right|_{\partial \Omega}=0\right\}$.


## The Galerkin method for Poisson's equation

## Variational formulation

Seek a critical point $v \in V$ of $E$.

$$
E(v)=\int_{\Omega}\left(\frac{1}{2}\|\nabla v\|^{2}-f v\right) .
$$

## Weak formulation

Seek a $v \in V$ for which the equation holds for all $w \in V$.

$$
\int_{\Omega}(\langle\nabla v, \nabla w\rangle-f w)=0 .
$$

- Let $V$ denote the space of functions $v: \Omega \rightarrow \mathbb{R}$.
- For example, $V=\left\{v \in L^{2}(\Omega)\left|\nabla v \in L^{2}(\Omega), v\right|_{\partial \Omega}=0\right\}$.
- Choose a finite-dimensional subspace $V_{h}$ of $V$.


## The Galerkin method for Poisson's equation

## Variational formulation

Seek a critical point $v_{h} \in V_{h}$ of $\left.E\right|_{V_{h}}$.

$$
E\left(v_{h}\right)=\int_{\Omega}\left(\frac{1}{2}\left\|\nabla v_{h}\right\|^{2}-f v_{h}\right) .
$$

## Weak formulation

Seek a $v \in V$ for which the equation holds for all $w \in V$.

$$
\int_{\Omega}(\langle\nabla v, \nabla w\rangle-f w)=0 .
$$

- Let $V$ denote the space of functions $v: \Omega \rightarrow \mathbb{R}$.
- For example, $V=\left\{v \in L^{2}(\Omega)\left|\nabla v \in L^{2}(\Omega), v\right|_{\partial \Omega}=0\right\}$.
- Choose a finite-dimensional subspace $V_{h}$ of $V$.


## The Galerkin method for Poisson's equation

## Variational formulation

Seek a critical point $v_{h} \in V_{h}$ of $E \mid v_{h}$.

$$
E\left(v_{h}\right)=\int_{\Omega}\left(\frac{1}{2}\left\|\nabla v_{h}\right\|^{2}-f v_{h}\right) .
$$

## Weak formulation

Seek a $v_{h} \in V_{h}$ for which the equation holds for all $w_{h} \in V_{h}$.

$$
\int_{\Omega}\left(\left\langle\nabla v_{h}, \nabla w_{h}\right\rangle-f w_{h}\right)=0 .
$$

- Let $V$ denote the space of functions $v: \Omega \rightarrow \mathbb{R}$.
- For example, $V=\left\{v \in L^{2}(\Omega)\left|\nabla v \in L^{2}(\Omega), v\right|_{\partial \Omega}=0\right\}$.
- Choose a finite-dimensional subspace $V_{h}$ of $V$.


## The Galerkin method for Poisson's equation

## Variational formulation

Seek a critical point $v_{h} \in V_{h}$ of $\left.E\right|_{V_{h}}$.

$$
E\left(v_{h}\right)=\int_{\Omega}\left(\frac{1}{2}\left\|\nabla v_{h}\right\|^{2}-f v_{h}\right) .
$$

## Weak formulation

Seek a $v_{h} \in V_{h}$ for which the equation holds for all $w_{h} \in V_{h}$.

$$
\int_{\Omega}\left(\left\langle\nabla v_{h}, \nabla w_{h}\right\rangle-f w_{h}\right)=0 .
$$

- Let $V$ denote the space of functions $v: \Omega \rightarrow \mathbb{R}$.
- For example, $V=\left\{v \in L^{2}(\Omega)\left|\nabla v \in L^{2}(\Omega), v\right|_{\partial \Omega}=0\right\}$.
- Choose a finite-dimensional subspace $V_{h}$ of $V$.
- The bigger $V_{h}$ is, the better our approximation.


## Constructing $V_{h}$ : the finite element method



Figure: A triangulation of a square domain.

## Constructing the finite-dimensional subspace $V_{h} \subset V$

## Constructing $V_{h}$ : the finite element method



Figure: A triangulation of a square domain.

## Constructing the finite-dimensional subspace $V_{h} \subset V$

- Construct a triangulation $\mathcal{T}_{h}$ of the domain $\Omega$.


## Constructing $V_{h}$ : the finite element method



Figure: A triangulation of a square domain.

## Constructing the finite-dimensional subspace $V_{h} \subset V$

- Construct a triangulation $\mathcal{T}_{h}$ of the domain $\Omega$.
- Let $V_{h} \subset V$ be the set of continuous functions that are piecewise linear with respect to $\mathcal{T}_{h}$.


## Constructing $V_{h}$ : the finite element method



Figure: A triangulation of a square domain.

## Constructing the finite-dimensional subspace $V_{h} \subset V$

- Construct a triangulation $\mathcal{T}_{h}$ of the domain $\Omega$.
- Let $V_{h} \subset V$ be the set of continuous functions that are piecewise linear with respect to $\mathcal{T}_{h}$.
- More generally, can have piecewise polynomials of degree at most $r$.


## Constructing $V_{h}$ : the finite element method



Figure: A triangulation of a square domain.

## Constructing the finite-dimensional subspace $V_{h} \subset V$

- Construct a triangulation $\mathcal{T}_{h}$ of the domain $\Omega$.
- Let $V_{h} \subset V$ be the set of continuous functions that are piecewise linear with respect to $\mathcal{T}_{h}$.
- More generally, can have piecewise polynomials of degree at most $r$.
- The Galerkin method gives us the $v_{h} \in V_{h}$ that is the "best" approximation of the true solution.


## Constructing $V_{h}$ : the finite element method



Figure: A triangulation of a square domain.

## Constructing the finite-dimensional subspace $V_{h} \subset V$

- Construct a triangulation $\mathcal{T}_{h}$ of the domain $\Omega$.
- Let $V_{h} \subset V$ be the set of continuous functions that are piecewise linear with respect to $\mathcal{T}_{h}$.
- More generally, can have piecewise polynomials of degree at most $r$.
- The Galerkin method gives us the $v_{h} \in V_{h}$ that is the "best" approximation of the true solution.
- By refining the triangulation, we get a larger $V_{h}$ and a better approximation.


## The finite element method: degrees of freedom

How do we specify a piecewise linear function $v_{h}$ ?

## The finite element method: degrees of freedom

How do we specify a piecewise linear function $v_{h}$ ?


Figure: Degrees of freedom (blue) of piecewise linear functions (left) and piecewise quadratic functions (right).

- Specifying a value at each degree of freedom
- uniquely determines the function on each triangle, and
- enforces continuity between adjacent triangles.


## The finite element method for vector fields

What if we wanted to solve $\Delta v+f=0$ where $v$ and $f$ are vector fields (with appropriate boundary conditions)?

## The finite element method for vector fields

What if we wanted to solve $\Delta v+f=0$ where $v$ and $f$ are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

## The finite element method for vector fields

What if we wanted to solve $\Delta v+f=0$ where $v$ and $f$ are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).


## The finite element method for vector fields

What if we wanted to solve $\Delta v+f=0$ where $v$ and $f$ are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).


## The finite element method for vector fields

What if we wanted to solve $\Delta v+f=0$ where $v$ and $f$ are vector fields（with appropriate boundary conditions）？

Understanding the degrees of freedom of vector fields with tangential continuity
－Two dimensions（Raviart，Thomas，1977；Brezzi，Douglas， Marini，1985）．
－Three dimensions（Nédélec，1980；Nédélec，1986）．
－Finite element exterior calculus（Arnold，Falk，Winther，2006）．

## The finite element method for vector fields

What if we wanted to solve $\Delta v+f=0$ where $v$ and $f$ are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
- Finite element exterior calculus (Arnold, Falk, Winther, 2006).
- Unified perspective on scalar fields and vector fields as differential forms, in any dimension.


## The finite element method for vector fields

What if we wanted to solve $\Delta v+f=0$ where $v$ and $f$ are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
- Finite element exterior calculus (Arnold, Falk, Winther, 2006).
- Unified perspective on scalar fields and vector fields as differential forms, in any dimension.
E Yakov Berchenko-Kogan.
Duality in finite element exterior calculus, 2018.
http://arxiv.org/abs/1807.01161.


## The finite element method for vector fields

What if we wanted to solve $\Delta v+f=0$ where $v$ and $f$ are vector fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with tangential continuity

- Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas, Marini, 1985).
- Three dimensions (Nédélec, 1980; Nédélec, 1986).
- Finite element exterior calculus (Arnold, Falk, Winther, 2006).
- Unified perspective on scalar fields and vector fields as differential forms, in any dimension.
Fit Yakov Berchenko-Kogan.
Duality in finite element exterior calculus, 2018.
http://arxiv.org/abs/1807.01161.
围 Yakov Berchenko-Kogan.
Duality in finite element exterior calculus and the Hodge star operator on the sphere. In preparation, 2019.


## An alternative: hybrid methods

## Standard finite element method

## An alternative: hybrid methods

## Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## An alternative: hybrid methods

## Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## Hybrid method

## An alternative: hybrid methods

## Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## Hybrid method

- Do not require $v_{h}$ to be continuous.


## An alternative: hybrid methods

## Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## Hybrid method

- Do not require $v_{h}$ to be continuous.
- Enforce continuity using Lagrange multipliers.


## An alternative: hybrid methods

Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## Hybrid method

- Do not require $v_{h}$ to be continuous.
- Enforce continuity using Lagrange multipliers.


## Interpretation of the hybrid method

## An alternative: hybrid methods

## Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## Hybrid method

- Do not require $v_{h}$ to be continuous.
- Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method

- Each triangle is now an independent system.


## An alternative: hybrid methods

## Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## Hybrid method

- Do not require $v_{h}$ to be continuous.
- Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method

- Each triangle is now an independent system.
- The Lagrange multipliers describe how adjacent systems interact.


## An alternative: hybrid methods

## Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## Hybrid method

- Do not require $v_{h}$ to be continuous.
- Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method

- Each triangle is now an independent system.
- The Lagrange multipliers describe how adjacent systems interact.
- For Poisson's equation: heat transfer between adjacent triangles.


## An alternative: hybrid methods

## Standard finite element method

- Seek a continuous piecewise linear function $v_{h}$ that best approximates the true solution.


## Hybrid method

- Do not require $v_{h}$ to be continuous.
- Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method

- Each triangle is now an independent system.
- The Lagrange multipliers describe how adjacent systems interact.
- For Poisson's equation: heat transfer between adjacent triangles.
- See (Brezzi and Fortin, 1991).


## (optional slide) Hybrid methods for Poisson's problem

## Variational formulation

Instead of $E\left(v_{h}\right)=\int_{\Omega}\left(\frac{1}{2}\left\|\nabla v_{h}\right\|^{2}-f v_{h}\right)$, we have

$$
E_{h}\left(v_{h}, \hat{p}_{h}\right)=\sum_{K \in \mathcal{T}_{h}} \int_{K}\left(\frac{1}{2}\left\|\nabla v_{h}\right\|^{2}-f v_{h}\right)-\sum_{K \in \mathcal{T}_{h}} \int_{\partial K}\left(\hat{p}_{h} \cdot n\right) v_{h} .
$$

## Weak formulation

- For all $K \in \mathcal{T}_{h}, w_{h} \in V_{h}$,

$$
\int_{K}\left(\left\langle\nabla v_{h}, \nabla w_{h}\right\rangle-f w_{h}\right)-\int_{\partial K}\left(\hat{p}_{h} \cdot n\right) w_{h}=0
$$

- Weakly enforces $-\Delta v_{h}=f$ on $K$ and $\hat{p}_{h} \cdot n=\nabla v_{h} \cdot n$ on $\partial K$.
- For all $\hat{q}_{h} \in \hat{P}_{h}$,

$$
\sum_{K \in \mathcal{T}_{h}} \int_{\partial K}\left(\hat{q}_{h} \cdot n\right) v_{h}=0 \text { for all } \hat{q}_{h} \in \hat{P}_{h} .
$$

- Weakly enforces continuity of $v_{h}$.


## Conservation of charge in numerical methods for Maxwell's equations

( Yakov Berchenko-Kogan and Ari Stern.
Constraint-preserving hybrid finite element methods for Maxwell's equations.
In preparation, 2019.
R- Yakov Berchenko-Kogan and Ari Stern.
Constraint-preserving hybrid finite element methods for the Yang-Mills equations.
In preparation, 2019.

## Maxwell's equations

## Maxwell's equations

## Maxwell's equations

## Maxwell's equations

- Electric vector field $E$.


## Maxwell's equations

## Maxwell's equations

- Electric vector field $E$.
- Divergence free magnetic vector field $B$.


## Maxwell's equations

## Maxwell's equations

- Electric vector field $E$.
- Divergence free magnetic vector field $B$.
- Evolution equations

$$
\dot{E}=\operatorname{curl} B, \quad \dot{B}=-\operatorname{curl} E .
$$

## Maxwell's equations

## Maxwell's equations

- Electric vector field $E$.
- Divergence free magnetic vector field $B$.
- Evolution equations

$$
\dot{E}=\operatorname{curl} B, \quad \dot{B}=-\operatorname{curl} E .
$$

- For purposes of exposition, we have set $\epsilon=\mu=1$ and assumed there is no current.


## Maxwell＇s equations

## Maxwell＇s equations

－Electric vector field $E$ ．
－Divergence free magnetic vector field $B$ ．
－Evolution equations

$$
\dot{E}=\operatorname{curl} B, \quad \dot{B}=-\operatorname{curl} E .
$$

－For purposes of exposition，we have set $\epsilon=\mu=1$ and assumed there is no current．

## Charge conservation

## Maxwell's equations

## Maxwell's equations

- Electric vector field $E$.
- Divergence free magnetic vector field $B$.
- Evolution equations

$$
\dot{E}=\operatorname{curl} B, \quad \dot{B}=-\operatorname{curl} E .
$$

- For purposes of exposition, we have set $\epsilon=\mu=1$ and assumed there is no current.


## Charge conservation

- $\operatorname{div} E$ is a conserved quantity.

$$
\frac{d}{d t}(\operatorname{div} E)=\operatorname{div} \dot{E}=\operatorname{div} \text { curl } B=0
$$

## Maxwell's equations

## Maxwell's equations

- Electric vector field $E$.
- Divergence free magnetic vector field $B$.
- Evolution equations

$$
\dot{E}=\operatorname{curl} B, \quad \dot{B}=-\operatorname{curl} E
$$

- For purposes of exposition, we have set $\epsilon=\mu=1$ and assumed there is no current.


## Charge conservation

- $\operatorname{div} E$ is a conserved quantity.

$$
\frac{d}{d t}(\operatorname{div} E)=\operatorname{div} \dot{E}=\operatorname{div} \text { curl } B=0
$$

- $\operatorname{div} E$ represents the charge density, denoted $\rho$, so this conservation law is the conservation of charge.


## Maxwell's equations: examples



Figure: Stationary and dynamic solutions to Maxwell's equations. Image credit: Wikipedia. Video credit: Electrical Exclusive.

## Maxwell's equations: the vector potential

An equivalent formulation of Maxwell's equations

## Maxwell's equations: the vector potential

An equivalent formulation of Maxwell's equations

- A vector field $A$ called the vector potential.


## Maxwell's equations: the vector potential

An equivalent formulation of Maxwell's equations

- A vector field $A$ called the vector potential.
- Evolution equation

$$
\ddot{A}=-\operatorname{curl} \operatorname{curl} A .
$$

## Maxwell's equations: the vector potential

An equivalent formulation of Maxwell's equations

- A vector field $A$ called the vector potential.
- Evolution equation

$$
\ddot{A}=-\operatorname{curl} \operatorname{curl} A .
$$

Equivalence to $\dot{E}=\operatorname{curl} B$ and $\dot{B}=-\operatorname{curl} E$
Set

$$
E:=-\dot{A}, \quad B:=\operatorname{curl} A .
$$

## Maxwell's equations: the vector potential

An equivalent formulation of Maxwell's equations

- A vector field $A$ called the vector potential.
- Evolution equation

$$
\ddot{A}=-\operatorname{curl} \text { curl } A .
$$

Equivalence to $\dot{E}=\operatorname{curl} B$ and $\dot{B}=-\operatorname{curl} E$
Set

$$
E:=-\dot{A}, \quad B:=\operatorname{curl} A .
$$

- The evolution equation $\dot{B}=-\operatorname{curl} E$ is automatically satisfied.


## Maxwell's equations: the vector potential

An equivalent formulation of Maxwell's equations

- A vector field $A$ called the vector potential.
- Evolution equation

$$
\ddot{A}=-\operatorname{curl} \text { curl } A .
$$

Equivalence to $\dot{E}=\operatorname{curl} B$ and $\dot{B}=-\operatorname{curl} E$
Set

$$
E:=-\dot{A}, \quad B:=\operatorname{curl} A .
$$

- The evolution equation $\dot{B}=-$ curl $E$ is automatically satisfied.
- $\ddot{A}=-$ curl curl $A$ implies $\dot{E}=$ curl $B$.


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).
- Requires a strucutured cubical mesh.


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).
- Requires a strucutured cubical mesh.
- Galerkin method (Nédélec, 1980).


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).
- Requires a strucutured cubical mesh.
- Galerkin method (Nédélec, 1980).
- Allows unstructured meshes.


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).
- Requires a strucutured cubical mesh.
- Galerkin method (Nédélec, 1980).
- Allows unstructured meshes.
- Allows higher-degree piecewise polynomial fields.


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).
- Requires a strucutured cubical mesh.
- Galerkin method (Nédélec, 1980).
- Allows unstructured meshes.
- Allows higher-degree piecewise polynomial fields.
- Weak charge conservation.


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).
- Requires a strucutured cubical mesh.
- Galerkin method (Nédélec, 1980).
- Allows unstructured meshes.
- Allows higher-degree piecewise polynomial fields.
- Weak charge conservation.
- Hybrid method (BK, Stern, 2019).


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).
- Requires a strucutured cubical mesh.
- Galerkin method (Nédélec, 1980).
- Allows unstructured meshes.
- Allows higher-degree piecewise polynomial fields.
- Weak charge conservation.
- Hybrid method (BK, Stern, 2019).
- Strong charge conservation.


## Maxwell's equations: numerical charge conservation

- Yee scheme (Yee, 1966).
- Requires a strucutured cubical mesh.
- Galerkin method (Nédélec, 1980).
- Allows unstructured meshes.
- Allows higher-degree piecewise polynomial fields.
- Weak charge conservation.
- Hybrid method (BK, Stern, 2019).
- Strong charge conservation.
- Improved rate of convergence.


## The Galerkin method for Maxwell's equations (Nédélec)

## Weak formulation

$\ddot{A}=-\operatorname{curl}$ curl $A$ is equivalent to

$$
\int_{\Omega}\left\langle\ddot{A}, A^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A, \operatorname{curl} A^{\prime}\right\rangle
$$

for all vector fields $A^{\prime}$ whose tangential components vanish on $\partial \Omega$.

## The Galerkin method for Maxwell's equations (Nédélec)

## Weak formulation

$\ddot{A}=-\operatorname{curl}$ curl $A$ is equivalent to

$$
\int_{\Omega}\left\langle\ddot{A}, A^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A, \operatorname{curl} A^{\prime}\right\rangle
$$

for all vector fields $A^{\prime}$ whose tangential components vanish on $\partial \Omega$.

## The Galerkin method

## The Galerkin method for Maxwell＇s equations（Nédélec）

## Weak formulation

$\ddot{A}=-\operatorname{curl}$ curl $A$ is equivalent to

$$
\int_{\Omega}\left\langle\ddot{A}, A^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A, \operatorname{curl} A^{\prime}\right\rangle
$$

for all vector fields $A^{\prime}$ whose tangential components vanish on $\partial \Omega$ ．

## The Galerkin method

－Let $V_{h}$ be a finite－dimensional subspace of vector fields．

## The Galerkin method for Maxwell's equations (Nédélec)

## Weak formulation

$\ddot{A}=-\operatorname{curl}$ curl $A$ is equivalent to

$$
\int_{\Omega}\left\langle\ddot{A}, A^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A, \operatorname{curl} A^{\prime}\right\rangle
$$

for all vector fields $A^{\prime}$ whose tangential components vanish on $\partial \Omega$.

## The Galerkin method

- Let $V_{h}$ be a finite-dimensional subspace of vector fields.
- Given $A_{h} \in V_{h}$, solve

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, A_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } A_{h}^{\prime}\right\rangle \text { for all } A_{h}^{\prime} \in V_{h}
$$

for $\ddot{A}_{h} \in V_{h}$.

## The Galerkin method for Maxwell's equations (Nédélec)

## Weak formulation

$\ddot{A}=-$ curl curl $A$ is equivalent to

$$
\int_{\Omega}\left\langle\ddot{A}, A^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A, \operatorname{curl} A^{\prime}\right\rangle
$$

for all vector fields $A^{\prime}$ whose tangential components vanish on $\partial \Omega$.

## The Galerkin method

- Let $V_{h}$ be a finite-dimensional subspace of vector fields.
- Given $A_{h} \in V_{h}$, solve

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, A_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } A_{h}^{\prime}\right\rangle \text { for all } A_{h}^{\prime} \in V_{h}
$$

for $\ddot{A}_{h} \in V_{h}$.

- We now have finite system of second-order ODEs.


## The Galerkin method: charge conservation (Nédélec)

## Galerkin weak formulation

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, A_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } A_{h}^{\prime}\right\rangle \text { for all } A_{h}^{\prime} \in V_{h}
$$

## The Galerkin method: charge conservation (Nédélec)

## Galerkin weak formulation

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, A_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } A_{h}^{\prime}\right\rangle \text { for all } A_{h}^{\prime} \in V_{h}
$$

## Charge conservation

## The Galerkin method：charge conservation（Nédélec）

## Galerkin weak formulation

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, A_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } A_{h}^{\prime}\right\rangle \text { for all } A_{h}^{\prime} \in V_{h}
$$

## Charge conservation

－We want conservation of $\rho_{h}:=\operatorname{div} E_{h}=-\operatorname{div} \dot{A}_{h}$ ．

## The Galerkin method: charge conservation (Nédélec)

## Galerkin weak formulation

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, A_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } A_{h}^{\prime}\right\rangle \text { for all } A_{h}^{\prime} \in V_{h}
$$

## Charge conservation

- We want conservation of $\rho_{h}:=\operatorname{div} E_{h}=-\operatorname{div} \dot{A}_{h}$.
- Let $\phi_{h}^{\prime}$ be a scalar field such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$. Then

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, \operatorname{grad} \phi_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } \operatorname{grad} \phi_{h}^{\prime}\right\rangle=0 .
$$

## The Galerkin method: charge conservation (Nédélec)

## Galerkin weak formulation

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, A_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } A_{h}^{\prime}\right\rangle \text { for all } A_{h}^{\prime} \in V_{h}
$$

## Charge conservation

- We want conservation of $\rho_{h}:=\operatorname{div} E_{h}=-\operatorname{div} \dot{A}_{h}$.
- Let $\phi_{h}^{\prime}$ be a scalar field such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$. Then

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, \operatorname{grad} \phi_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \operatorname{curl} \operatorname{grad} \phi_{h}^{\prime}\right\rangle=0 .
$$

- Integrating by parts,

$$
0=-\int_{\Omega}\left(\operatorname{div} \ddot{A}_{h}\right) \phi_{h}^{\prime}=\int_{\Omega} \dot{\rho}_{h} \phi_{h}^{\prime}=\frac{d}{d t} \int_{\Omega} \rho_{h} \phi_{h}^{\prime} .
$$

## The Galerkin method: charge conservation (Nédélec)

## Galerkin weak formulation

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, A_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \text { curl } A_{h}^{\prime}\right\rangle \text { for all } A_{h}^{\prime} \in V_{h}
$$

## Charge conservation

- We want conservation of $\rho_{h}:=\operatorname{div} E_{h}=-\operatorname{div} \dot{A}_{h}$.
- Let $\phi_{h}^{\prime}$ be a scalar field such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$. Then

$$
\int_{\Omega}\left\langle\ddot{A}_{h}, \operatorname{grad} \phi_{h}^{\prime}\right\rangle=-\int_{\Omega}\left\langle\operatorname{curl} A_{h}, \operatorname{curl} \operatorname{grad} \phi_{h}^{\prime}\right\rangle=0 .
$$

- Integrating by parts,

$$
0=-\int_{\Omega}\left(\operatorname{div} \ddot{A}_{h}\right) \phi_{h}^{\prime}=\int_{\Omega} \dot{\rho}_{h} \phi_{h}^{\prime}=\frac{d}{d t} \int_{\Omega} \rho_{h} \phi_{h}^{\prime} .
$$

- We only have charge conservation in a weighted average sense.


## Hybrid methods for Maxwell's equations (BK, Stern)

Joint work with Ari Stern.

- We construct an appropriate version of hybrid methods for vector equations.


## Hybrid methods for Maxwell's equations (BK, Stern)

Joint work with Ari Stern.

- We construct an appropriate version of hybrid methods for vector equations.
- i.e. we allow $A_{h}$ to be discontinuous and enforce continuity with Lagrange multipliers.


## Hybrid methods for Maxwell's equations (BK, Stern)

Joint work with Ari Stern.

- We construct an appropriate version of hybrid methods for vector equations.
- i.e. we allow $A_{h}$ to be discontinuous and enforce continuity with Lagrange multipliers.
- The physical intepretation of these Lagrange multipliers are the electric and magnetic fields, so we denote them $\hat{E}_{h}$ and $\hat{B}_{h}$.


## Hybrid methods for Maxwell's equations (BK, Stern)

Joint work with Ari Stern.

- We construct an appropriate version of hybrid methods for vector equations.
- i.e. we allow $A_{h}$ to be discontinuous and enforce continuity with Lagrange multipliers.
- The physical intepretation of these Lagrange multipliers are the electric and magnetic fields, so we denote them $\hat{E}_{h}$ and $\hat{B}_{h}$.


## Theorem (BK, Stern)

Solutions to our hybrid formulation of Maxwell's equations satisfy

$$
\frac{d}{d t} \operatorname{div} \hat{E}_{h}=0
$$

That is, we have a strong charge conservation law for our numerical method.

## Hybrid methods for Maxwell's equations (BK, Stern)



Figure: Total charge using $E_{h}$ (Nédélec, solid line) vs. $\hat{E}_{h}$ (our method, dashed line), simulating on a cube domain.

## The Yang-Mills equations

- The Yang-Mills equations are a generalization of Maxwell's equations.


## The Yang-Mills equations

- The Yang-Mills equations are a generalization of Maxwell's equations.
- Nonlinear.


## The Yang-Mills equations

- The Yang-Mills equations are a generalization of Maxwell's equations.
- Nonlinear.
- Used in particle physics.


## The Yang-Mills equations

- The Yang-Mills equations are a generalization of Maxwell's equations.
- Nonlinear.
- Used in particle physics.
- Used by Donaldson to distinguish manifolds that are homeomorphic but not diffeomorphic.


## The Yang-Mills equations

- The Yang-Mills equations are a generalization of Maxwell's equations.
- Nonlinear.
- Used in particle physics.
- Used by Donaldson to distinguish manifolds that are homeomorphic but not diffeomorphic.
- The Yang-Mills equations have a charge conservation law.


## The Yang-Mills equations

- The Yang-Mills equations are a generalization of Maxwell's equations.
- Nonlinear.
- Used in particle physics.
- Used by Donaldson to distinguish manifolds that are homeomorphic but not diffeomorphic.
- The Yang-Mills equations have a charge conservation law.
- We want numerical methods to conserve charge as well.


## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

- Nédélec's method gave us conservation of weighted average charge.


## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

- Nédélec's method gave us conservation of weighted average charge.
- $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ is conserved for any scalar field $\phi_{h}^{\prime}$ such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$.


## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

- Nédélec's method gave us conservation of weighted average charge.
- $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ is conserved for any scalar field $\phi_{h}^{\prime}$ such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$.


## Nédélec's method for the Yang-Mills equations

## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

- Nédélec's method gave us conservation of weighted average charge.
- $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ is conserved for any scalar field $\phi_{h}^{\prime}$ such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$.


## Nédélec's method for the Yang-Mills equations

- grad is replaced by a nonlinear operator.


## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

- Nédélec's method gave us conservation of weighted average charge.
- $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ is conserved for any scalar field $\phi_{h}^{\prime}$ such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$.


## Nédélec's method for the Yang-Mills equations

- grad is replaced by a nonlinear operator.
- Consequently, the condition corresponding to grad $\phi_{h}^{\prime} \in V_{h}$ is much harder to satisfy.


## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

- Nédélec's method gave us conservation of weighted average charge.
- $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ is conserved for any scalar field $\phi_{h}^{\prime}$ such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$.


## Nédélec's method for the Yang-Mills equations

- grad is replaced by a nonlinear operator.
- Consequently, the condition corresponding to $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$ is much harder to satisfy.
- Only works if $\phi_{h}^{\prime}$ is constant.


## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

- Nédélec's method gave us conservation of weighted average charge.
- $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ is conserved for any scalar field $\phi_{h}^{\prime}$ such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$.


## Nédélec's method for the Yang-Mills equations

- grad is replaced by a nonlinear operator.
- Consequently, the condition corresponding to grad $\phi_{h}^{\prime} \in V_{h}$ is much harder to satisfy.
- Only works if $\phi_{h}^{\prime}$ is constant.
- Get conservation of $\int_{\Omega} \rho_{h}$, i.e. global conservation of total charge.


## Nédélec's method applied to the Yang-Mills equations

## Maxwell's equations

- Nédélec's method gave us conservation of weighted average charge.
- $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ is conserved for any scalar field $\phi_{h}^{\prime}$ such that $\operatorname{grad} \phi_{h}^{\prime} \in V_{h}$.


## Nédélec's method for the Yang-Mills equations

- grad is replaced by a nonlinear operator.
- Consequently, the condition corresponding to grad $\phi_{h}^{\prime} \in V_{h}$ is much harder to satisfy.
- Only works if $\phi_{h}^{\prime}$ is constant.
- Get conservation of $\int_{\Omega} \rho_{h}$, i.e. global conservation of total charge.
- See (Christiansen and Winther, 2006).


## Hybrid methods for the Yang-Mills equations (BK, Stern)

Charge conservation

## Hybrid methods for the Yang-Mills equations (BK, Stern)

Charge conservation

- From before: conservation of $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ for constant functions $\phi_{h}^{\prime}$.


## Hybrid methods for the Yang-Mills equations (BK, Stern)

## Charge conservation

- From before: conservation of $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ for constant functions $\phi_{h}^{\prime}$.
- The hybrid method allows discontinuous $\phi_{h}^{\prime}$, so we can use $\phi_{h}^{\prime}$ that are piecewise constant with respect to a triangulation $\mathcal{T}_{h}$.


## Hybrid methods for the Yang-Mills equations (BK, Stern)

## Charge conservation

- From before: conservation of $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ for constant functions $\phi_{h}^{\prime}$.
- The hybrid method allows discontinuous $\phi_{h}^{\prime}$, so we can use $\phi_{h}^{\prime}$ that are piecewise constant with respect to a triangulation $\mathcal{T}_{h}$.
- In particular, consider a $\phi_{h}^{\prime}$ that is zero outside of a single element $K \in \mathcal{T}_{h}$.


## Hybrid methods for the Yang-Mills equations (BK, Stern)

## Charge conservation

- From before: conservation of $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ for constant functions $\phi_{h}^{\prime}$.
- The hybrid method allows discontinuous $\phi_{h}^{\prime}$, so we can use $\phi_{h}^{\prime}$ that are piecewise constant with respect to a triangulation $\mathcal{T}_{h}$.
- In particular, consider a $\phi_{h}^{\prime}$ that is zero outside of a single element $K \in \mathcal{T}_{h}$.


## Theorem (BK, Stern)

For our hybrid formulation of the Yang-Mills equations, the quantity $\rho_{h}$ representing the charge is conserved locally:

## Hybrid methods for the Yang-Mills equations (BK, Stern)

## Charge conservation

- From before: conservation of $\int_{\Omega} \rho_{h} \phi_{h}^{\prime}$ for constant functions $\phi_{h}^{\prime}$.
- The hybrid method allows discontinuous $\phi_{h}^{\prime}$, so we can use $\phi_{h}^{\prime}$ that are piecewise constant with respect to a triangulation $\mathcal{T}_{h}$.
- In particular, consider a $\phi_{h}^{\prime}$ that is zero outside of a single element $K \in \mathcal{T}_{h}$.


## Theorem (BK, Stern)

For our hybrid formulation of the Yang-Mills equations, the quantity $\rho_{h}$ representing the charge is conserved locally:

- $\int_{K} \rho_{h}$ is conserved in each element $K \in \mathcal{T}_{h}$.


## Mean curvature flow self-shrinkers

嗇 Yakov Berchenko-Kogan.
The entropy of the Angenent torus is approximately 1.85122 . Journal of Experimental Mathematics, accepted for publication, 2019.
http://arxiv.org/abs/1808.08163.

## Curve shortening flow



Figure: Curve shortening flow. Image credit: Treibergs. Video credit: Angenent.

## Mean curvature flow

Figure: Mean curvature flow. Video credit: Kovács.

## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.


## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere


## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere
- round cylinder


## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere
- round cylinder
- others?


## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere
- round cylinder
- others?
- Such a limiting surface must be a self-shrinker.


## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere
- round cylinder
- others?
- Such a limiting surface must be a self-shrinker.
- A self-shrinker is a surface that evolves under mean curvature flow by dilations.


## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere
- round cylinder
- others?
- Such a limiting surface must be a self-shrinker.
- A self-shrinker is a surface that evolves under mean curvature flow by dilations.
- Are there other self-shrinkers?


## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere
- round cylinder
- others?
- Such a limiting surface must be a self-shrinker.
- A self-shrinker is a surface that evolves under mean curvature flow by dilations.
- Are there other self-shrinkers?
- Yes, a torus (Angenent, 1989).


## Mean curvature flow singularities

- Categorize singularities by zooming in at the singular point just before the singular time.
- round sphere
- round cylinder
- others?
- Such a limiting surface must be a self-shrinker.
- A self-shrinker is a surface that evolves under mean curvature flow by dilations.
- Are there other self-shrinkers?
- Yes, a torus (Angenent, 1989).
- Many others (Kapouleas, Kleene, Møller, 2011).


## Rotationally symmetric self-shrinkers



Figure: Cross-sections of three self-shrinkers: the sphere (green), the cylinder (orange), and the Angenent torus (blue).

## A variational formulation for self-shrinkers

## Theorem (Huisken, 1990)

A hypersurface $\Sigma \subset \mathbb{R}^{n+1}$ is a self-shrinker that becomes extinct at the origin after one unit of time if and only if it is a critical point of the weighted area functional called the F-functional.

$$
F(\Sigma)=(4 \pi)^{-n / 2} \int_{\Sigma} e^{-|x|^{2} / 4} d \text { Area. }
$$

## Entropy of self-shrinkers

The critical value of the $F$-functional, called the entropy of the self-shrinker, is helpful in understanding what kinds of singularities can occur.


Figure: Entropies of self-shrinking surfaces
Earlier work (Drugan and Nguyen, 2018): the entropy of the Angenent torus is less than 2.

## Entropy of self-shrinkers

The critical value of the $F$-functional, called the entropy of the self-shrinker, is helpful in understanding what kinds of singularities can occur.


Figure: Entropies of self-shrinking surfaces
Earlier work (Drugan and Nguyen, 2018): the entropy of the Angenent torus is less than 2.

## Variational formulations for rotationally-symmetric self-shrinkers

A rotationally symmetric surface $\Sigma \subset \mathbb{R}^{3}$ with cross-sectional curve $q$ is a self-shrinker if:

- $\Sigma$ is a critical point of

$$
F(\Sigma)=\frac{1}{4 \pi} \int_{\Sigma} e^{-|x|^{2} / 4} d \text { Area. }
$$

## Variational formulations for rotationally-symmetric self-shrinkers

A rotationally symmetric surface $\Sigma \subset \mathbb{R}^{3}$ with cross-sectional curve $q$ is a self-shrinker if:

- $\Sigma$ is a critical point of

$$
F(\Sigma)=\frac{1}{4 \pi} \int_{\Sigma} e^{-|x|^{2} / 4} d \text { Area. }
$$

- $q$ is a critical point of

$$
\frac{1}{2} \int_{q} r e^{-\left(r^{2}+z^{2}\right) / 4} d \text { Arclength. }
$$

## Variational formulations for rotationally-symmetric self-shrinkers

A rotationally symmetric surface $\Sigma \subset \mathbb{R}^{3}$ with cross-sectional curve $q$ is a self-shrinker if:

- $\Sigma$ is a critical point of

$$
F(\Sigma)=\frac{1}{4 \pi} \int_{\Sigma} e^{-|x|^{2} / 4} d \text { Area. }
$$

- $q$ is a critical point of

$$
\frac{1}{2} \int_{q} r e^{-\left(r^{2}+z^{2}\right) / 4} d \text { Arclength. }
$$

- $q$ is a geodesic in the $(r, z)$-plane with Riemannian metric

$$
g=\frac{1}{4} r^{2} e^{-\left(r^{2}+z^{2}\right) / 4}\left(d r^{2}+d z^{2}\right) .
$$

## Variational formulations for rotationally-symmetric self-shrinkers

A rotationally symmetric surface $\Sigma \subset \mathbb{R}^{3}$ with cross-sectional curve $q$ is a self-shrinker if:

- $\Sigma$ is a critical point of

$$
F(\Sigma)=\frac{1}{4 \pi} \int_{\Sigma} e^{-|x|^{2} / 4} d \text { Area. }
$$

- $q$ is a critical point of

$$
\frac{1}{2} \int_{q} r e^{-\left(r^{2}+z^{2}\right) / 4} d \text { Arclength. }
$$

- $q$ is a geodesic in the $(r, z)$-plane with Riemannian metric

$$
g=\frac{1}{4} r^{2} e^{-\left(r^{2}+z^{2}\right) / 4}\left(d r^{2}+d z^{2}\right) .
$$

- $q$ is a critical point of

$$
\mathfrak{S}(q)=\int \frac{1}{4} r^{2} e^{-\left(r^{2}+z^{2}\right) / 2}\|\dot{q}\|^{2} d t
$$

## Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve $q$ in the $(r, z)$-plane that is a critical point of

$$
\mathfrak{S}(q)=\int \frac{1}{4} r^{2} e^{-\left(r^{2}+z^{2}\right) / 2}\|\dot{q}\|^{2} d t
$$

- Approximate $q$ with a discrete curve $q_{0}, q_{1}, \ldots, q_{N}=q_{0}$


## Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve $q$ in the $(r, z)$-plane that is a critical point of

$$
\mathfrak{S}(q)=\int \frac{1}{4} r^{2} e^{-\left(r^{2}+z^{2}\right) / 2}\|\dot{q}\|^{2} d t
$$

- Approximate $q$ with a discrete curve $q_{0}, q_{1}, \ldots, q_{N}=q_{0}$
- Approximate $\mathfrak{S}$ with a functional $\mathfrak{S}_{d}$ on discrete curves.

$$
\mathfrak{S}(q) \approx \mathfrak{S}_{d}\left(q_{1}, \ldots, q_{N}\right)
$$

## Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve $q$ in the $(r, z)$-plane that is a critical point of

$$
\mathfrak{S}(q)=\int \frac{1}{4} r^{2} e^{-\left(r^{2}+z^{2}\right) / 2}\|\dot{q}\|^{2} d t
$$

- Approximate $q$ with a discrete curve $q_{0}, q_{1}, \ldots, q_{N}=q_{0}$
- Approximate $\mathfrak{S}$ with a functional $\mathfrak{S}_{d}$ on discrete curves.

$$
\mathfrak{S}(q) \approx \mathfrak{S}_{d}\left(q_{1}, \ldots, q_{N}\right)
$$

- Compute a critical point of the finite-dimensional functional $\mathfrak{S}_{d}$.


## Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve $q$ in the $(r, z)$-plane that is a critical point of

$$
\mathfrak{S}(q)=\int \frac{1}{4} r^{2} e^{-\left(r^{2}+z^{2}\right) / 2}\|\dot{q}\|^{2} d t
$$

- Approximate $q$ with a discrete curve $q_{0}, q_{1}, \ldots, q_{N}=q_{0}$
- Approximate $\mathfrak{S}$ with a functional $\mathfrak{S}_{d}$ on discrete curves.

$$
\mathfrak{S}(q) \approx \mathfrak{S}_{d}\left(q_{1}, \ldots, q_{N}\right)
$$

- Compute a critical point of the finite-dimensional functional $\mathfrak{S}_{d}$.
- This discrete curve approximates the cross-section of the Angenent torus.


## Numerical estimates of the entropy of the Angenent torus



Figure: The entropy of the Angenent torus as computed using 128, 256, 512,1024 , and 2048 points. The values (orange) appear to lie on an exponential curve (blue) converging to 1.8512167 (green).

The convergence rate suggests that the computed value is within $2 \times 10^{-6}$ of the true value.

## Future directions

## The index of the Angenent torus

- Critical points of a functional have an index.
- How many independent perturbations decrease the value of the functional?
- The number of negative eigenvalues of the Hessian.
- The index of the Angenent torus is at least 3 (Liu, 2016) but is otherwise unknown even conjecturally.
- Computing the index of the Angenent torus would give insight into how "generic" Angenent torus singularities are.
- We can easily compute the Hessian of $\mathfrak{S}_{d}$.


## Higher dimensions

- Angenent described a self-shrinking doughnut $S^{1} \times S^{n-1}$ in any dimension.
- My code can compute its entropy.
- What is the limiting behavior as $n$ becomes large?


## Thank you

