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Preserving conservation laws

Many physical systems have conserved quantities.

energy, angular momentum, electric charge

Figure: Rigid body dynamics (International Space Station)

There is no guarantee that these conservation laws will
continue to hold when we numerically simulate the system.

energy gain or loss (numerical dissipation)

Goal: create numerical methods that preserve conservation
laws.
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Toy example: the harmonic oscillator

Figure: A simple harmonic oscillator. Video credit: Wikipedia

Equations of Motion

ẍ = −x .

Conservation of energy

1
2

(
ẋ2 + x2

)
is conserved.
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The harmonic oscillator: numerical conservation

x

y = ẋ

Figure: Phase space diagram for the harmonic oscillator. ẍ = ẏ = −x .
The energy 1

2 (x2 + ẋ2) is conserved.
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2 (x2 + ẋ2) is conserved.

Yakov Berchenko-Kogan Variational Numerical Methods in Geometric PDE



The harmonic oscillator: numerical conservation

x

y = ẋ
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Variational formulations

A variational formulation of a problem is a way of expressing its
solutions as the critical points of a functional.

Example

Seek solutions to q̈ = 0 among parametrized curves
q : [0,T ]→ R3.

Consider the functional

S(q) =

∫ T

0

1
2 ‖q̇‖

2 dt.

Fix endpoints q0 and qT .

Consider curves q : [0,T ]→ R3 with q(0) = q0 and
q(T ) = qT .

The critical point q of S is a solution to q̈ = 0.
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Variational formulations

Example

Geodesics in (M, g) are critical points q : [0,T ]→ M of

S(q) =

∫ T

0

1
2 ‖q̇‖

2
g dt

with fixed endpoints.

Example

Harmonic oscillator trajectories ẍ = −x are critical points
x : [0,T ]→ R of

S(x) =

∫ T

0

1
2

(
|ẋ |2 − |x |2

)

with fixed endpoints.
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Variational integrators for ODEs

Numerically solving ODEs using a variational formulation

Say we seek curves q : [0,T ]→ M that are critical points of a
functional S(q).

Consider points q0, q1, . . . , qN on q. We call such a sequence
of points a discrete curve.

Figure: A discrete curve (red) on a continuous curve (blue).

Construct a functional Sd : {discrete curves} → R such that

Sd(q0, . . . , qN) ≈ S(q).
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Variational integrators for ODEs

Numerically solving ODEs using a variational formulation

Construct a functional Sd : {discrete curves} → R such that

Sd(q0, . . . , qN) ≈ S(q).

Numerically solve a finite system of equations to find the
critical discrete curves for Sd .

The discrete curves that are critical points of Sd are
numerical approximations for the continuous curves that are
critical points of S.

This numerical method preserves conservation laws.

discrete Noether’s theorem

See Marsden and West, Discrete Mechanics and Variational
Integrators, 2001.
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Variational formulations for PDEs: Poisson’s equation

Standard PDE formulation

Given f : Ω→ R, seek a solution v to

∆v + f = 0 on Ω, v = 0 on ∂Ω.

Variational formulation

Seek a critical point v of E .

E (v) =

∫

Ω

(
1
2 ‖∇v‖

2 − fv
)
, v = 0 on ∂Ω.

Weak formulation

Seek a v for which the equation holds for all w .

∫

Ω
(〈∇v ,∇w〉 − fw) = 0, v = w = 0 on ∂Ω.
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The Galerkin method

Variational integrator for ODEs

converts an infinite-dimensional variational problem to a
finite-dimensional variational problem.

approximates critical curves of S(q) with critical discrete
curves of Sd(q0, . . . , qN).

The Galerkin method for PDEs

converts an infinite-dimensional variational problem to a
finite-dimensional variational problem.

approximates critical functions v with critical functions vh
coming from a finite-dimensional space.
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The Galerkin method for Poisson’s equation

Let V denote the space of functions v : Ω→ R.

For example, V = {v ∈ L2(Ω) | ∇v ∈ L2(Ω), v |∂Ω = 0}.
Choose a finite-dimensional subspace Vh of V .

The bigger Vh is, the better our approximation.
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The Galerkin method for Poisson’s equation

Variational formulation
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Constructing Vh: the finite element method

Figure: A triangulation of a square domain.

Constructing the finite-dimensional subspace Vh ⊂ V

Construct a triangulation Th of the domain Ω.

Let Vh ⊂ V be the set of continuous functions that are
piecewise linear with respect to Th.

More generally, can have piecewise polynomials of degree at
most r .

The Galerkin method gives us the vh ∈ Vh that is the “best”
approximation of the true solution.

By refining the triangulation, we get a larger Vh and a better
approximation.
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approximation.
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The finite element method: degrees of freedom

How do we specify a piecewise linear function vh?

Figure: Degrees of freedom (blue) of piecewise linear functions (left) and
piecewise quadratic functions (right).

Specifying a value at each degree of freedom

uniquely determines the function on each triangle, and
enforces continuity between adjacent triangles.
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The finite element method for vector fields

What if we wanted to solve ∆v + f = 0 where v and f are vector
fields (with appropriate boundary conditions)?

Understanding the degrees of freedom of vector fields with
tangential continuity

Two dimensions (Raviart, Thomas, 1977; Brezzi, Douglas,
Marini, 1985).

Three dimensions (Nédélec, 1980; Nédélec, 1986).

Finite element exterior calculus (Arnold, Falk, Winther, 2006).

Unified perspective on scalar fields and vector fields as
differential forms, in any dimension.

Yakov Berchenko-Kogan.
Duality in finite element exterior calculus, 2018.
http://arxiv.org/abs/1807.01161.

Yakov Berchenko-Kogan.
Duality in finite element exterior calculus and the Hodge
star operator on the sphere. In preparation, 2019.
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An alternative: hybrid methods

Standard finite element method

Seek a continuous piecewise linear function vh that best
approximates the true solution.

Hybrid method

Do not require vh to be continuous.

Enforce continuity using Lagrange multipliers.

Interpretation of the hybrid method

Each triangle is now an independent system.

The Lagrange multipliers describe how adjacent systems
interact.

For Poisson’s equation: heat transfer between adjacent
triangles.

See (Brezzi and Fortin, 1991).
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(optional slide) Hybrid methods for Poisson’s problem

Variational formulation

Instead of E (vh) =
∫

Ω

(
1
2 ‖∇vh‖

2 − fvh

)
, we have

Eh(vh, p̂h) =
∑

K∈Th

∫

K

(
1
2 ‖∇vh‖

2 − fvh

)
−
∑

K∈Th

∫

∂K
(p̂h · n)vh.

Weak formulation

For all K ∈ Th,wh ∈ Vh,∫

K
(〈∇vh,∇wh〉 − fwh)−

∫

∂K
(p̂h · n)wh = 0

Weakly enforces −∆vh = f on K and p̂h · n = ∇vh · n on ∂K .

For all q̂h ∈ P̂h,
∑

K∈Th

∫

∂K
(q̂h · n)vh = 0 for all q̂h ∈ P̂h.

Weakly enforces continuity of vh.
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Conservation of charge in numerical methods for Maxwell’s
equations

Yakov Berchenko-Kogan and Ari Stern.
Constraint-preserving hybrid finite element methods for
Maxwell’s equations.
In preparation, 2019.

Yakov Berchenko-Kogan and Ari Stern.
Constraint-preserving hybrid finite element methods for the
Yang–Mills equations.
In preparation, 2019.
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Maxwell’s equations

Maxwell’s equations

Electric vector field E .

Divergence free magnetic vector field B.

Evolution equations

Ė = curlB, Ḃ = − curlE .

For purposes of exposition, we have set ε = µ = 1 and
assumed there is no current.

Charge conservation

div E is a conserved quantity.

d

dt
(div E ) = div Ė = div curlB = 0.

div E represents the charge density, denoted ρ, so this
conservation law is the conservation of charge.
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(div E ) = div Ė = div curlB = 0.

div E represents the charge density, denoted ρ, so this
conservation law is the conservation of charge.

Yakov Berchenko-Kogan Variational Numerical Methods in Geometric PDE



Maxwell’s equations

Maxwell’s equations

Electric vector field E .

Divergence free magnetic vector field B.

Evolution equations
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Maxwell’s equations: examples

Figure: Stationary and dynamic solutions to Maxwell’s equations. Image
credit: Wikipedia. Video credit: Electrical Exclusive.
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Maxwell’s equations: the vector potential

An equivalent formulation of Maxwell’s equations

A vector field A called the vector potential.

Evolution equation

Ä = − curl curlA.

Equivalence to Ė = curlB and Ḃ = − curlE

Set

E := −Ȧ, B := curlA.

The evolution equation Ḃ = − curlE is automatically satisfied.

Ä = − curl curlA implies Ė = curlB.
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Ä = − curl curlA.
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Ä = − curl curlA implies Ė = curlB.
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Equivalence to Ė = curlB and Ḃ = − curlE

Set
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Maxwell’s equations: numerical charge conservation

Yee scheme (Yee, 1966).

Requires a strucutured cubical mesh.

Galerkin method (Nédélec, 1980).

Allows unstructured meshes.
Allows higher-degree piecewise polynomial fields.
Weak charge conservation.

Hybrid method (BK, Stern, 2019).

Strong charge conservation.
Improved rate of convergence.
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Allows unstructured meshes.
Allows higher-degree piecewise polynomial fields.
Weak charge conservation.

Hybrid method (BK, Stern, 2019).

Strong charge conservation.
Improved rate of convergence.

Yakov Berchenko-Kogan Variational Numerical Methods in Geometric PDE



Maxwell’s equations: numerical charge conservation

Yee scheme (Yee, 1966).

Requires a strucutured cubical mesh.

Galerkin method (Nédélec, 1980).
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Allows unstructured meshes.
Allows higher-degree piecewise polynomial fields.
Weak charge conservation.

Hybrid method (BK, Stern, 2019).

Strong charge conservation.

Improved rate of convergence.

Yakov Berchenko-Kogan Variational Numerical Methods in Geometric PDE



Maxwell’s equations: numerical charge conservation

Yee scheme (Yee, 1966).

Requires a strucutured cubical mesh.

Galerkin method (Nédélec, 1980).
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The Galerkin method for Maxwell’s equations (Nédélec)

Weak formulation

Ä = − curl curlA is equivalent to

∫

Ω
〈Ä,A′〉 = −

∫

Ω
〈curlA, curlA′〉

for all vector fields A′ whose tangential components vanish on ∂Ω.

The Galerkin method

Let Vh be a finite-dimensional subspace of vector fields.

Given Ah ∈ Vh, solve
∫

Ω
〈Äh,A

′
h〉 = −

∫

Ω
〈curlAh, curlA′h〉 for all A′h ∈ Vh

for Äh ∈ Vh.

We now have finite system of second-order ODEs.
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〈Äh,A

′
h〉 = −

∫

Ω
〈curlAh, curlA′h〉 for all A′h ∈ Vh
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The Galerkin method: charge conservation (Nédélec)

Galerkin weak formulation
∫

Ω
〈Äh,A

′
h〉 = −

∫

Ω
〈curlAh, curlA′h〉 for all A′h ∈ Vh

Charge conservation

We want conservation of ρh := div Eh = − div Ȧh.

Let φ′h be a scalar field such that gradφ′h ∈ Vh. Then

∫

Ω
〈Äh, gradφ′h〉 = −

∫

Ω
〈curlAh, curl gradφ′h〉 = 0.

Integrating by parts,

0 = −
∫

Ω
(div Äh)φ′h =

∫

Ω
ρ̇hφ

′
h =

d

dt

∫

Ω
ρhφ

′
h.

We only have charge conservation in a weighted average sense.
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Let φ′h be a scalar field such that gradφ′h ∈ Vh. Then

∫

Ω
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Hybrid methods for Maxwell’s equations (BK, Stern)

Joint work with Ari Stern.

We construct an appropriate version of hybrid methods for
vector equations.

i.e. we allow Ah to be discontinuous and enforce continuity
with Lagrange multipliers.

The physical intepretation of these Lagrange multipliers are
the electric and magnetic fields, so we denote them Êh and
B̂h.

Theorem (BK, Stern)

Solutions to our hybrid formulation of Maxwell’s equations satisfy

d

dt
div Êh = 0.

That is, we have a strong charge conservation law for our
numerical method.
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Hybrid methods for Maxwell’s equations (BK, Stern)
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Figure: Total charge using Eh (Nédélec, solid line) vs. Êh (our method,
dashed line), simulating on a cube domain.
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The Yang–Mills equations

The Yang–Mills equations are a generalization of Maxwell’s
equations.

Nonlinear.
Used in particle physics.
Used by Donaldson to distinguish manifolds that are
homeomorphic but not diffeomorphic.

The Yang–Mills equations have a charge conservation law.

We want numerical methods to conserve charge as well.
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Nédélec’s method applied to the Yang–Mills equations

Maxwell’s equations

Nédélec’s method gave us conservation of weighted average
charge.

∫
Ω
ρhφ

′
h is conserved for any scalar field φ′h such that

gradφ′h ∈ Vh.

Nédélec’s method for the Yang-Mills equations

grad is replaced by a nonlinear operator.

Consequently, the condition corresponding to gradφ′h ∈ Vh is
much harder to satisfy.

Only works if φ′h is constant.

Get conservation of
∫

Ω ρh, i.e. global conservation of total
charge.

See (Christiansen and Winther, 2006).
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Nédélec’s method gave us conservation of weighted average
charge.∫

Ω
ρhφ

′
h is conserved for any scalar field φ′h such that

gradφ′h ∈ Vh.
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Nédélec’s method gave us conservation of weighted average
charge.∫

Ω
ρhφ

′
h is conserved for any scalar field φ′h such that

gradφ′h ∈ Vh.
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Hybrid methods for the Yang–Mills equations (BK, Stern)

Charge conservation

From before: conservation of
∫

Ω ρhφ
′
h for constant functions

φ′h.

The hybrid method allows discontinuous φ′h, so we can use φ′h
that are piecewise constant with respect to a triangulation Th.

In particular, consider a φ′h that is zero outside of a single
element K ∈ Th.

Theorem (BK, Stern)

For our hybrid formulation of the Yang–Mills equations, the
quantity ρh representing the charge is conserved locally:

∫
K ρh is conserved in each element K ∈ Th.
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Mean curvature flow self-shrinkers

Yakov Berchenko-Kogan.
The entropy of the Angenent torus is approximately 1.85122.
Journal of Experimental Mathematics, accepted for
publication, 2019.
http://arxiv.org/abs/1808.08163.
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Curve shortening flow

Figure: Curve shortening flow. Image credit: Treibergs. Video credit:
Angenent.

Yakov Berchenko-Kogan Variational Numerical Methods in Geometric PDE



Mean curvature flow

Figure: Mean curvature flow. Video credit: Kovács.
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Mean curvature flow singularities

Categorize singularities by zooming in at the singular point
just before the singular time.

round sphere
round cylinder
others?

Such a limiting surface must be a self-shrinker.

A self-shrinker is a surface that evolves under mean curvature
flow by dilations.

Are there other self-shrinkers?

Yes, a torus (Angenent, 1989).
Many others (Kapouleas, Kleene, Møller, 2011).
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Many others (Kapouleas, Kleene, Møller, 2011).
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Rotationally symmetric self-shrinkers
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Figure: Cross-sections of three self-shrinkers: the sphere (green), the
cylinder (orange), and the Angenent torus (blue).
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A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface Σ ⊂ Rn+1 is a self-shrinker that becomes extinct at
the origin after one unit of time if and only if it is a critical point
of the weighted area functional called the F -functional.

F (Σ) = (4π)−n/2

∫

Σ
e−|x |

2/4 dArea.
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Entropy of self-shrinkers

The critical value of the F -functional, called the entropy of the
self-shrinker, is helpful in understanding what kinds of singularities
can occur.

plane1

two planes2

sphere4
e

cylinder
√

2π
e

Angenent torus (BK)1.85

Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and Nguyen, 2018): the entropy of the
Angenent torus is less than 2.
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self-shrinker, is helpful in understanding what kinds of singularities
can occur.
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Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and Nguyen, 2018): the entropy of the
Angenent torus is less than 2.
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Variational formulations for rotationally-symmetric
self-shrinkers

A rotationally symmetric surface Σ ⊂ R3 with cross-sectional curve
q is a self-shrinker if:

Σ is a critical point of

F (Σ) =
1

4π

∫

Σ
e−|x |

2/4 dArea.

q is a critical point of

1

2

∫

q
re−(r2+z2)/4 dArclength.

q is a geodesic in the (r , z)-plane with Riemannian metric

g = 1
4 r

2e−(r2+z2)/4(dr2 + dz2).

q is a critical point of

S(q) =

∫
1
4 r

2e−(r2+z2)/2 ‖q̇‖2 dt.
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Computing the Angenent torus numerically

The cross-section of the Angenent torus is a closed curve q in the
(r , z)-plane that is a critical point of

S(q) =

∫
1
4 r

2e−(r2+z2)/2 ‖q̇‖2 dt.

Approximate q with a discrete curve q0, q1, . . . , qN = q0

Approximate S with a functional Sd on discrete curves.

S(q) ≈ Sd(q1, . . . , qN).

Compute a critical point of the finite-dimensional functional
Sd .

This discrete curve approximates the cross-section of the
Angenent torus.
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Numerical estimates of the entropy of the Angenent torus
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Figure: The entropy of the Angenent torus as computed using 128, 256,
512, 1024, and 2048 points. The values (orange) appear to lie on an
exponential curve (blue) converging to 1.8512167 (green).

The convergence rate suggests that the computed value is within
2× 10−6 of the true value.
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Future directions

The index of the Angenent torus

Critical points of a functional have an index.

How many independent perturbations decrease the value of the
functional?
The number of negative eigenvalues of the Hessian.

The index of the Angenent torus is at least 3 (Liu, 2016) but
is otherwise unknown even conjecturally.

Computing the index of the Angenent torus would give insight
into how “generic” Angenent torus singularities are.

We can easily compute the Hessian of Sd .

Higher dimensions

Angenent described a self-shrinking doughnut S1 × Sn−1 in
any dimension.

My code can compute its entropy.

What is the limiting behavior as n becomes large?
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Thank you
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