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Maxwell’s equations in vacuum

Maxwell’s equations in vacuum

Given charge density ρ and current density J satisfying ρ̇ = − div J, solve

Ė = curlB − J, Ḃ = − curlE .

for the electric and magnetic fields E and B, subject to the constraints

div E = ρ, divB = 0.

Constraint preservation

If initial conditions satisfy constraints, then constraints satisfied for all
time.

d

dt
(div E ) = div Ė = div curlB − div J = ρ̇,

d

dt
(divB) = div Ḃ = − div curlE = 0.
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Maxwell’s equations in a medium

Permittivity and permeability

The electromagnetic properties of a medium are defined by scalar
fields (or, more generally, matrix fields) ε and µ, the electric
permittivity and magnetic permeability, respectively.

We distinguish between the electric field E and the electric flux
density

D := εE .

We distinguish between the magnetic flux density B and the magnetic
field

H := µ−1B.

Maxwell’s equations

Ḋ = curlH − J, Ḃ = − curlE

divD = ρ, divB = 0.
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Maxwell’s equations in terms of potentials

Electric and magnetic potentials

Let φ be a scalar field and A be a vector field, called the electric
potential and magnetic potential respectively.

Let E := −(Ȧ + gradφ), B := curlA.

E and B are invariant under the transformation

(φ,A) 7→ (φ− ξ̇,A + grad ξ).

Integrating ξ̇ = φ can WLOG set φ = 0; this is the temporal gauge.

Maxwell’s equations

Ḋ = curlH − J, Ḃ = − curlE

divD = ρ, divB = 0.

Right equations automatically satisfied.

Second-order equation in A: d
dt (−εȦ) = curl(µ−1 curlA)− J.

Y. Berchenko-Kogan (Penn State) Charge-Conserving Methods 4 / 16



Nédélec’s method

Maxwell’s equations

Ḋ = curlH − J

Solve for A, where D = −εȦ and H = µ−1 curlA.

Weak formulation
∫

Ω
A′ · (Ḋ + J) =

∫

Ω
curlA′ · H, ∀A′ ∈ H̊(curl)

Solve for A ∈ H̊(curl).

Galerkin semidiscretization
∫

Ω
A′h · (Ḋh + J) =

∫

Ω
curlA′h · Hh, ∀A′h ∈ Vh,

Solve for Ah ∈ Vh, where Vh a finite-dimensional subspace of H̊(curl),
Dh = −εȦh, and Hh = µ−1 curlAh.

Second-order system of ODEs.
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Nédélec’s method: weak charge conservation

Nédélec’s method

Solve ∫

Ω
A′h · (Ḋh + J) =

∫

Ω
curlA′h · Hh, ∀A′h ∈ Vh,

for Ah ∈ Vh, where Vh a finite-dimensional subspace of H̊(curl),
Dh = −εȦh, and Hh = µ−1 curlAh.

Weak charge conservation

For all scalar fields φ′h such that gradφ′h ∈ Vh, set A′h = gradφ′h:
∫

Ω
gradφ′h · (Ḋh + J) = 0.

Weak form of charge conservation:

div Ḋ = − div J = ρ̇.

If Vh is a space of curl-conforming Nédélec elements, then φ′h
piecewise polynomial up to degree r all satisfy gradφ′h ∈ Vh.
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Domain decomposition

Domain decomposition (see Brezzi and Fortin)

Fix a triangulation Th; allow A to be discontinuous between simplices.

Enforce continuity with Lagrange multipliers.

Weak formulation
∫

Ω

(
A′ · (Ḋ + J)− curlA′ · H

)
= 0, ∀A′ ∈ H̊(curl; Ω)

Solve for A ∈ H̊(curl; Ω).

Domain-decomposed weak formulation∫

K

(
A′ · (Ḋ + J)− curlA′ · H

)
+

∫

∂K
(A′ × Ĥ) · n = 0, ∀A′ ∈ H(curl;K )

∑

K∈Th

∫

∂K
(A× Ĥ ′) · n = 0, ∀Ĥ ′ ∈ H(curl; Ω).

Solve for A ∈ H(curl;K ) ∀K ∈ Th and Ĥ ∈ H(curl; Ω).
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Domain-decomposed Maxwell’s equations

Domain-decomposed weak formulation∫

K

(
A′ · (Ḋ + J)− curlA′ · H

)
+

∫

∂K
(A′ × Ĥ) · n = 0, ∀A′ ∈ H(curl;K )

∑

K∈Th

∫

∂K
(A× Ĥ ′) · n = 0, ∀Ĥ ′ ∈ H(curl; Ω).

Solve for A ∈ H(curl;K ) ∀K ∈ Th and Ĥ ∈ H(curl; Ω), where D = −εȦ
and H = µ−1 curlA (computed element-wise).

Proposition

A pair (A, Ĥ) solves the domain-decomposed problem if and only if A
solves the original weak formulation and Ĥ × n|∂K = H × n|∂K for all K .

D̂

If we do not gauge fix φ = 0, then we also get Lagrange multiplier D̂
enforcing continuity of φ, and D̂ · n|∂K = D · n|∂K for all K .
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Charge conservation

Semidiscretized domain-decomposed Maxwell’s equations∫

K

(
A′h · (Ḋh + J)− curlA′h · Hh

)
+

∫

∂K
(A′h × Ĥh) · n = 0, ∀A′h ∈ Vh(K )

∑

K∈Th

∫

∂K
(Ah × Ĥ ′h) · n = 0, ∀Ĥ ′h ∈ V̂h(Ω).

Solve for Ah ∈ Vh(K ) ∀K ∈ Th and Ĥh ∈ V̂h(Ω), where Vh(K ) and V̂h(Ω)
are finite-dimensional subspaces of H(curl;K ) and H(curl; Ω), respectively,
Dh = −εȦh, and Hh = µ−1 curlAh (computed element-wise).

For large V̂h(Ω), equivalent to Nédélec’s method plus postprocessing.

D̂h

D̂h is the Lagrange multiplier enforcing continuity of φh.

Ĥh is in H(curl), (unlike Hh), so let
˙̂
Dh = curl Ĥh − J.

div
˙̂
Dh = − div J = ρ̇.
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Numerical experiments
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Figure: On a cube domain starting with no charge: total absolute charge using
Dh := −εȦh (Nédélec’s method, solid line) vs. D̂h (our method, dashed line).
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Maxwell’s equations using differential forms

Potentials, fields, fluxes

φ ∈ Λ0(Ω), A ∈ Λ1(Ω),

E = −Ȧ + dφ ∈ Λ1(Ω) B = dA ∈ Λ2(Ω),

ε : Λ1 → Λ2 µ : Λ1 → Λ2,

D = εE ∈ Λ2(Ω), H = µ−1B ∈ Λ1(Ω),

ρ ∈ Λ3(Ω), J ∈ Λ2(Ω).

Maxwell’s equations

Ḋ = dH − J,

∫

Ω
A′ ∧ (Ḋ + J) =

∫

Ω
dA′ ∧ H, ∀A′

dD = ρ,

∫

Ω
dφ′ ∧ D =

∫

Ω
φ′ρ, ∀φ′.
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The Yang–Mills equations

Potentials, fields, fluxes

φ ∈ Λ0(Ω, g), A ∈ Λ1(Ω, g),

E = −Ȧ + dφ+ [A, φ] ∈ Λ1(Ω, g) B = dA + 1
2 [A ∧ A] ∈ Λ2(Ω, g),

ε : Λ1 → Λ2 µ : Λ1 → Λ2,

D = εE ∈ Λ2(Ω, g), H = µ−1B ∈ Λ1(Ω, g),

ρ ∈ Λ3(Ω, g), J ∈ Λ2(Ω, g).

The Yang–Mills equations with φ = 0 and J = 0

Ḋ = dH + [A ∧ H],

∫

Ω
〈A′ ∧ Ḋ〉 =

∫

Ω
〈(dA′ + [A ∧ A′]) ∧ H〉,

dD + [A ∧ D] = ρ,

∫

Ω
〈(dφ′ + [A, φ′] ∧ D〉 =

∫

Ω
〈φ′, ρ〉.
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Nédélec’s method only conserves total charge on Ω
see Christiansen and Winther

Semidiscretization of the Yang–Mills equations
∫

Ω
〈A′h ∧ Ḋh〉 =

∫

Ω
〈(dA′h + [Ah ∧ A′h]) ∧ Hh〉, ∀A′h ∈ Vh,

where Vh is a finite-dimensional subspace of H̊Λ1(Ω, g) (e.g. g-valued
Nédélec elements).

Weak charge conservation

For φ′h ∈ Λ0(Ω, g) such that A′h := dφ′h + [Ah, φ
′
h] ∈ Vh, we have

weak charge conservation∫

Ω
〈(dφ′h + [Ah, φ

′
h]) ∧ Ḋh〉 = 0 =

∫

Ω
〈φ′h, ρ̇〉.

Weak form of d
dt (dDh + [Ah ∧ Dh])

Problem: dφ′h + [Ah, φ
′
h] is generally only going to be in Vh if φ′h is

constant ⇒ conservation only of total charge on Ω.
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Our method conserves total charge on each element K

Semidiscretized domain-decomposed Yang–Mills equations∫

K

(
〈A′

h ∧ Ḋh〉 − 〈(dA′
h + [Ah ∧ A′

h]) ∧ Hh〉
)

+

∫

∂K

〈A′
h ∧ Ĥh〉 = 0, ∀A′

h ∈ Vh(K ),

∑

K∈Th

∫

∂K

〈Ah ∧ Ĥ ′
h〉 = 0, ∀Ĥ ′

h ∈ V̂h(Ω).

Solve for Ah ∈ Vh(K ) ∀K ∈ Th and Ĥh ∈ V̂h(Ω), where Vh(K ) and V̂h(Ω)
are finite-dimensional subspaces of HΛ1(K , g) and HΛ1(Ω, g), respectively,
Dh = −εȦh, and Hh = µ−1(dAh + 1

2 [Ah ∧ Ah]) (computed element-wise).

Local charge conservation

Let D̂h satisfy
˙̂
Dh = dĤh + [Ah ∧ Ĥh].

No strong charge conservation: d
dt (dD̂h + [Ah ∧ D̂h]) 6= 0 (due to

nonlinearity and Hh 6= Ĥh).

Do have d
dt

∫
K 〈φ′h, dD̂h + [Ah ∧ Dh]〉 = 0 for all φ′h constant on K .

⇒ conservation of total charge on each element.
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Numerical experiments
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Figure: A simulation of the Yang–Mills equations with ρ = 0 and g = su(2).

Two estimates for charge:
ρh := dDh + [Ah ∧ Dh].

ρ̂h := dD̂h + [Ah ∧ Dh].

Plot: Average ρh (ρ̂h) on each element K , then square and integrate.
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Mixed finite elements in R3.
Numer. Math., 35(3):315–341, 1980.

Franco Brezzi and Michel Fortin.
Mixed and hybrid finite element methods.
Springer-Verlag, New York, 1991.

Snorre H. Christiansen and Ragnar Winther.
On constraint preservation in numerical simulations of Yang-Mills equations.
SIAM J. Sci. Comput., 28(1):75–101, 2006.

Y. I. Berchenko-Kogan and A. Stern.
Constraint-preserving hybrid finite element methods for Maxwell’s equations.
Found. Comput. Math., 2021.

Y. I. Berchenko-Kogan and A. Stern.
Charge-conserving hybrid methods for the Yang–Mills equations.

SMAI J. Comput. Math., 2021.

Y. Berchenko-Kogan (Penn State) Charge-Conserving Methods 16 / 16


