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Motivation

In his 1752 paper, Euler showed that the equations of motion of a rigid body can be written in a much simpler way by expressing the angular velocity with respect to a basis that rotates
along with the rigid body. In 1904, Hamel generalized these Euler-Poincaré equations to equations of motion where the velocity is expressed with respect to an arbitrary basis, not necessarily
one arising from a Lie group action. We extend Hamel’s equations to infinite-dimensional systems, providing a systematic way of deriving simpler equations of motion in the presence of
nonholonomic constraints or symmetry, without unnecessary Lagrange multipliers. These results appear in the Journal of Nonlinear Science vol. 27 (2017), no. 1, 241–283.

Lagrangian mechanics

We view the evolution of a mechanical system as a tra-
jectory q(t) in some configuration manifold Q. We
describe the system with a Lagrangian L(q, q̇), a real-
valued function of position q ∈ Q and velocity q̇ ∈ TqQ
representing the difference between the potential and the
kinetic energy of the system.

Hamilton’s principle of stationary action

Given a parametrized curve q(t) for a ≤ t ≤ b, the
action functional of the curve is∫ b

a

L(q(t), q̇(t)) dt.

Hamilton’s principle of stationary action states that
the trajectories of a mechanical system will be critical
points of the action functional. That is, a mehanical
system will evolve along the trajectory q(t) if

d

dε

∣∣∣∣
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∫ b

a

L(qε(t), q̇ε(t)) = 0,

for any variation qε of curves through q = q0 with fixed
endpoints qε(a) = q(a) and qε(b) = q(b).

The Euler-Lagrange equations

In local coordinates, q =
(
q1, . . . , qn

)
and

q̇ =
∑

q̇i ∂∂qi.

The principle of stationary action is equivalent to the
Euler-Lagrange equations of motion

d

dt

∂L

∂q̇i
=
∂L

∂qi
, i = 1, . . . , n.

Example: A spinning hockey puck

The configuration space is a position (x, y) in the
plane, along with an angle θ for the puck’s orienta-
tion. There is no potential energy in this system, so
the Lagrangian is equal to the kinetic energy

L(θ, x, y, θ̇, ẋ, ẏ) = 1
2Jθ̇

2 + 1
2m
(
ẋ2 + ẏ2

)
,

where m is the mass of the hockey puck and J is its
moment of inertia.
The Euler-Lagrange equations for this system are

Jθ̈ = 0, mẍ = 0, mÿ = 0.

The hockey puck moves in a straight line with constant
velocity, spinning at a constant rate.

Example: The Chaplygin sleigh

We introduce a constraint into the previous example.
Instead of a hockey puck, we have a platform on top of
a blade. The blade enforces the ideal constraint that
the object only moves in the direction θ by supplying
a normal force perpendicular to the blade.

θ

We introduce a Lagrange multiplier λ to represent
the magnitude of the normal force between the blade
and the ice. The force acts in the orthogonal direc-
tion − sin θ ∂

∂x + cos θ ∂
∂y, so the equations for the con-

strained system become

Jθ̈ = 0, mẍ = −λ sin θ, mÿ = λ cos θ,

coupled with the constraint −ẋ sin θ + ẏ cos θ = 0 re-
flecting that the normal component of the velocity of
the blade is zero. Using this constraint, we find that

λ = m(ẋ cos θ + ẏ sin θ)θ̇.

Hamel’s formalism for

finite-dimensional systems

In the Lagrangian formalism, we expressed the compo-
nents of the velocity q̇ with respect to the coordinate
frame ∂

∂qi. In the presence of either constraints or sym-
metry, we obtain simpler equations of motion when we
write the velocity in terms of a more natural local frame.

The Hamel equations

We express the velocity with respect to an arbitrary
frame ui(q). Each ui is a local vector field, and, at
each point q, the ui(q) form a basis. Instead of writing
q̇ =

∑
q̇i ∂∂qi, we split the velocity into components as

q̇ =
∑

ξiui(q).

We then rewrite the Lagrangian as

l
(
q, ξ1, . . . , ξn

)
= L

(
q,
∑

ξiui(q)
)
.

From Hamilton’s principle of stationary action, we de-
rive the Hamel equations

d

dt

∂l

∂ξj
= uj[l] +

∑
i,k

ckij
∂l

∂ξk
ξi, j = 1, . . . , n,

where uj[l] denotes the directional derivative of
l(·, ξi) : Q→ R in the direction uj, and the structure
functions ckij(q) are defined via the commutators

[ui, uj](q) = ckij(q)uk(q).

Unlike the coordinate vector fields ∂
∂qi, the vector fields

ui will have nontrivial commutators, which gave us an
extra term in the equations of motion.

Example: The Chaplygin sleigh

We wrote the velocity q̇ as θ̇ ∂
∂θ + ẋ ∂

∂x + ẏ ∂
∂y. Because

the motion is constrained to be in the direction θ, it is
more natural to consider the components of the veloc-
ity that are parallel and orthogonal to the direction θ.
Thus, we rewrite the velocity as

q̇ = ω ∂
∂θ + v

(
cos θ ∂

∂x + sin θ ∂
∂y

)
+ w

(
− sin θ ∂

∂x + cos θ ∂
∂y

)
.

In terms of these components, the Lagrangian is

l(q, ω, v, w) = 1
2Jθ̇

2 + 1
2m
(
v2 + w2

)
.

The unconstrained Hamel equations for this system are

Jω̇ = 0, mv̇ = mwω, mẇ = −mvω.
The constraint is just w = 0, and, as before, we enforce
it by supplying a normal force λ. The constrained
equations for the Chaplygin sleigh become

Jω̇ = 0, mv̇ = mwω, mẇ = −mvω + λ,

coupled with the constraint w = 0. Since ẇ = 0, it
is easy to solve for λ = mvω, and so we reduce these
equations to

Jω̇ = 0, mv̇ = 0,

again coupled with the constraint w = 0. These sim-
pler equations are equivalent to the ones we obtained
in the Lagrangian formalism.

Hamel’s formalism for

infinite-dimensional systems

In the finite-dimensional setting, instead of providing
a local frame ui(q), we could have equivalently pro-
vided a local trivialization, namely, a linear isomorphism
Ψq : Rn→ TqQ sending ξ =

(
ξ1, . . . , ξn

)
to
∑
ξiui(q) for

each point q in a local neighborhood. The map Ψq sends
the velocity components (ξ1, . . . , ξn) to the velocity vector
q̇ that they represent in TqQ.

q̇ = Ψq(ξ).

Whereas the concept of a local frame does not extend to
infinite dimensions, the concept of a local trivialization
does; we merely need to replace Rn by an appropriate
infinite-dimensional vector spaceW with a bounded linear
isomorphism Ψq : W → TqQ sending ξ to q̇.

The Hamel equations

We can rewrite the Lagrangian as

l(q, ξ) = L(q,Ψq(ξ)).

For fixed ξ and η, we have vector fields Ψq(ξ) and Ψq(η),
and we can compute their commutator [Ψ(ξ),Ψ(η)]. At
each point q, we can pull back this bracket to a Lie
bracket [ξ, η]q on W via

Ψq([ξ, η]q) = [Ψ(ξ),Ψ(η)] (q)

The Hamel equations on the left generalize to

d

dt

〈
∂l

∂ξ
, η

〉
W

=

〈
∂l

∂q
,Ψq(η)

〉
TqQ

+

〈
∂l

∂ξ
, [ξ, η]q

〉
W

for all η ∈ W.

Example: An inextensible string

Consider a free inextensible string in the plane
parametrized by 0 ≤ s ≤ L. Its position is described by
coordinate functions x(s) and y(s). We can represent
the velocity of each point on the string using its com-
ponents ẋ(s) and ẏ(s), but it is more natural to write
the velocity in terms of the component tangent to the
string and the component normal to the string, which
we denote as ξt(s) and ξn(s), respectively.

Using our formalism for this infinite-dimensional sys-
tem, we can write the equation of motion in terms of
ξt(s) and ξn(s) directly. It is helpful to use complex
numbers, writing ξ = ξt+ iξn. The equations of motion
are

ξ̇ = ξξ̄s + τs + iκ(τ − ξξ̄),

where κ is the signed curvature of the string and τ is
a Lagrange multiplier representing the tension of the
string and enforcing its incompressibility.
Imagining the string as a flexible blade on ice, we impose
the constraint that ξn = 0. Using our formalism for this
constrained system, our equations of motion become

ξ̇ = ξξ̄s + τs.
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