The Combinatorics of Finite Element Methods

Yakov Berchenko-Kogan
Florida Institute of Technology

August 28, 2023

Outline

(1) From finite elements to the Euler characteristic.

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic $V-E+F$.

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic $V-E+F$.
(2) From the Euler characteristic to cohomology (1500s-1930s).

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic $V-E+F$.
(2) From the Euler characteristic to cohomology (1500s-1930s).
- An introduction to Euler characteristic and cohomology.

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic $V-E+F$.
(2) From the Euler characteristic to cohomology (1500s-1930s).
- An introduction to Euler characteristic and cohomology.
- Both numerical analysis and cohomology are ways of going between the continuous world and the discrete world.

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic $V-E+F$.
(2) From the Euler characteristic to cohomology (1500s-1930s).
- An introduction to Euler characteristic and cohomology.
- Both numerical analysis and cohomology are ways of going between the continuous world and the discrete world.
- Some finite element spaces developed by numerical analysts in the 1970s and 1980s were actually rediscoveries of spaces developed by geometers decades earlier.

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic $V-E+F$.
(2) From the Euler characteristic to cohomology (1500s-1930s).
- An introduction to Euler characteristic and cohomology.
- Both numerical analysis and cohomology are ways of going between the continuous world and the discrete world.
- Some finite element spaces developed by numerical analysts in the 1970s and 1980s were actually rediscoveries of spaces developed by geometers decades earlier.
(3) From cohomology to finite elements (Arnold, Falk, Winther, 2006-2010).

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic $V-E+F$.
(2) From the Euler characteristic to cohomology (1500s-1930s).
- An introduction to Euler characteristic and cohomology.
- Both numerical analysis and cohomology are ways of going between the continuous world and the discrete world.
- Some finite element spaces developed by numerical analysts in the 1970s and 1980s were actually rediscoveries of spaces developed by geometers decades earlier.
(3) From cohomology to finite elements (Arnold, Falk, Winther, 2006-2010).
- Finite element spaces that respect cohomology work well.

Outline

(1) From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic $V-E+F$.
(2) From the Euler characteristic to cohomology (1500s-1930s).
- An introduction to Euler characteristic and cohomology.
- Both numerical analysis and cohomology are ways of going between the continuous world and the discrete world.
- Some finite element spaces developed by numerical analysts in the 1970s and 1980s were actually rediscoveries of spaces developed by geometers decades earlier.
(3) From cohomology to finite elements (Arnold, Falk, Winther, 2006-2010).
- Finite element spaces that respect cohomology work well.
- Finite element spaces that do not respect cohomology might give wrong answers.

Numerically solving PDEs

Sample Problem

Numerically solving PDEs

Sample Problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f
$$

and u vanishes on the boundary.

Numerically solving PDEs

Sample Problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f
$$

and u vanishes on the boundary.

Discretization

Numerically solving PDEs

Sample Problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f
$$

and u vanishes on the boundary.

Discretization

- To solve numerically, we must discretize.

Numerically solving PDEs

Sample Problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f
$$

and u vanishes on the boundary.

Discretization

- To solve numerically, we must discretize.
- We need a finite-dimensional space of functions that "approximates" the full infinite-dimensional space of possible U.

Finite-dimensional function spaces

Continuous piecewise linear functions to \mathbb{R}

Finite-dimensional function spaces

Continuous piecewise linear functions to \mathbb{R}

Finite-dimensional function spaces

Continuous piecewise linear functions to \mathbb{R}

Finite-dimensional function spaces

Continuous piecewise linear functions to \mathbb{R}

Continuous piecewise polynomial functions to \mathbb{R}

Figure: Piecewise quadratic (left) and piecewise cubic (right)

Finite-dimensional function spaces

Continuous piecewise linear functions to \mathbb{R}

Continuous piecewise polynomial functions to \mathbb{R}

Figure: Piecewise quadratic (left) and piecewise cubic (right)

Finite-dimensional function spaces

Continuous piecewise linear functions to \mathbb{R}

Continuous piecewise polynomial functions to \mathbb{R}

Figure: Piecewise quadratic (left) and piecewise cubic (right)

Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

Degrees of freedom (DOFs)

Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

Degrees of freedom (DOFs)

- One value per degree of freedom (blue dot)

Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

Degrees of freedom (DOFs)

- One value per degree of freedom (blue dot)
- yields a unique function on each triangle, and

Degrees of freedom

Piecewise linear／quadratic／cubic continuous scalar－valued functions

Degrees of freedom（DOFs）

－One value per degree of freedom（blue dot）
－yields a unique function on each triangle，and
－enforces continuity between adjacent triangles．

Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

Degrees of freedom (DOFs)

- One value per degree of freedom (blue dot)
- yields a unique function on each triangle, and
- enforces continuity between adjacent triangles.

Piecewise linear $\mid \mathbb{R}^{V}$
Piecewise quadratic Piecewise cubic
\mathbb{R}^{V+E}
$\mathbb{R}^{V+2 E+F}$

What about vector fields?

A naïve approach
Use continuous piecewise polynomial vector fields.

What about vector fields?

A naïve approach
Use continuous piecewise polynomial vector fields.

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

What about vector fields?

A naïve approach
Use continuous piecewise polynomial vector fields.

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen with the naïve approach (AFW, 2010)

What about vector fields?

A naïve approach

Use continuous piecewise polynomial vector fields.

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen with the naïve approach (AFW, 2010)

- Using vector fields with full continuity yields false eigenvalue $\lambda=6$.

What about vector fields?

A naïve approach

Use continuous piecewise polynomial vector fields.

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen with the naïve approach (AFW, 2010)

- Using vector fields with full continuity yields false eigenvalue $\lambda=6$.
- To get the right eigenvalues, we need better finite element spaces of vector fields.

Gradients of piecewise smooth scalar fields

Figure: A piecewise linear function (left) and its gradient (right)

Gradients of piecewise smooth scalar fields

Figure: A piecewise linear function (left) and its gradient (right)

Finite-dimensional spaces of vector fields

Continuity conditions

Finite-dimensional spaces of vector fields

Continuity conditions

- We want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

Finite-dimensional spaces of vector fields

Continuity conditions

- We want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

- Why do these spaces work better?

Finite-dimensional spaces of vector fields

Continuity conditions

- We want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

- Why do these spaces work better?
- Gradients of continuous piecewise smooth scalar fields only have tangential continuity.

Finite-dimensional spaces of vector fields

Continuity conditions

- We want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

- Why do these spaces work better?
- Gradients of continuous piecewise smooth scalar fields only have tangential continuity.
- Gradients of "valid objects" should be "valid objects".

Finite-dimensional spaces of vector fields

Continuity conditions

- We want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

- Why do these spaces work better?
- Gradients of continuous piecewise smooth scalar fields only have tangential continuity.
- Gradients of "valid objects" should be "valid objects".
- Having well-defined line integrals requires only tangential continuity.

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

- Values should

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

- Values should
- uniquely specify a linear vector field on each triangle, and

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

- Values should
- uniquely specify a linear vector field on each triangle, and
- enforce tangential continuity between adjacent triangles.

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

- Values should
- uniquely specify a linear vector field on each triangle, and
- enforce tangential continuity between adjacent triangles.

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

- Values should
- uniquely specify a linear vector field on each triangle, and
- enforce tangential continuity between adjacent triangles.

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

- Values should
- uniquely specify a linear vector field on each triangle, and
- enforce tangential continuity between adjacent triangles.

Higher degree?

Periodic Table of the Finite Elements

Complexes

A discrete complex

continuous grad tangentially continuous curl discontinuous piecewise cubic \longrightarrow piecewise quadratic $\xrightarrow{\text { piecewise linear }}$ scalar fields vector fields scalar fields

Complexes

A discrete complex

continuous grad tangentially continuous curl discontinuous piecewise cubic \longrightarrow piecewise quadratic $\xrightarrow{\text { piecewise linear }}$ scalar fields vector fields scalar fields

Complexes

A discrete complex

continuous grad tangentially continuous curl discontinuous piecewise cubic \longrightarrow piecewise quadratic $\xrightarrow{\text { curr }}$ piecewise linear scalar fields vector fields scalar fields

$\mathbb{R}^{V+2 E+F} \longrightarrow \mathbb{R}^{3 E+3 F}$

$\mathbb{R}^{3 F}$

Complexes

A discrete complex

continuous grad tangentially continuous piecewise cubic \longrightarrow piecewise quadratic scalar fields

$\mathbb{R}^{V+2 E+F} \longrightarrow \mathbb{R}^{3 E+3 F}$
discontinuous piecewise linear scalar fields

$\mathbb{R}^{3 F}$

Euler characteristic

Complexes

A discrete complex

continuous grad tangentially continuous piecewise cubic \longrightarrow piecewise quadratic scalar fields

$\mathbb{R}^{V+2 E+F} \longrightarrow \mathbb{R}^{3 E+3 F}$
discontinuous piecewise linear scalar fields

$\mathbb{R}^{3 F}$

Euler characteristic

- This complex has the right Euler characteristic:

$$
(V+2 E+F)-(3 E+3 F)+3 F=V-E+F .
$$

Euler characteristic

$$
V-E+F=2 \text { (Maurolico, 1537) }
$$

Name	Image	Vertices \boldsymbol{V}	Edges \boldsymbol{E}	Faces \boldsymbol{F}	Euler characteristic: $\chi=V-E+F$
Tetrahedron		4	6	4	$\mathbf{2}$
Hexahedron or cube		8	12	6	$\mathbf{2}$
Octahedron		6	12	8	2
Dodecahedron		20	30	12	$\mathbf{2}$
Icosahedron		12	30	20	$\mathbf{2}$

Figure: Wikipedia, "Euler characteristic"

Works for all convex polyhedra

Soccer ball:

$$
V-E+F=60-90+32=2
$$

Euler characteristic for other shapes

Figure: Wikipedia, "Euler characteristic"

Vector calculus in the plane (or on a surface)

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

Vector calculus in the plane (or on a surface)
scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

- If $E=\operatorname{grad} \phi$, then curl $E=0$.

Vector calculus in the plane (or on a surface)
scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

- If $E=\operatorname{grad} \phi$, then curl $E=0$.
- If curl $E=0$, then $E=\operatorname{grad} \phi$ for some ϕ.

Vector calculus in the plane (or on a surface)
scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

- If $E=\operatorname{grad} \phi$, then curl $E=0$. always true
- If curl $E=0$, then $E=\operatorname{grad} \phi$ for some ϕ. not always true

$\operatorname{curl} E=0$ but $E \neq \operatorname{grad} \phi$

The electric field around a solenoid

Figure: Wikipedia, "Irrotational vector field"

de Rham cohomology

The de Rham complex

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

de Rham cohomology

The de Rham complex

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

The first cohomology group H^{1}

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:
- Vector fields E on Ω

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:
- Vector fields E on Ω
- whose curls are zero, but

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:
- Vector fields E on Ω
- whose curls are zero, but
- which aren't gradients of a scalar field.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:
- Vector fields E on Ω
- whose curls are zero, but
- which aren't gradients of a scalar field.
- Caveat: If E is a counterexample, then so is $E^{\prime}:=E+\operatorname{grad} \psi$.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:
- Vector fields E on Ω
- whose curls are zero, but
- which aren't gradients of a scalar field.
- Caveat: If E is a counterexample, then so is $E^{\prime}:=E+\operatorname{grad} \psi$. - curl $E^{\prime}=\operatorname{curl} E+0=0$.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:
- Vector fields E on Ω
- whose curls are zero, but
- which aren't gradients of a scalar field.
- Caveat: If E is a counterexample, then so is $E^{\prime}:=E+\operatorname{grad} \psi$.
- curl $E^{\prime}=\operatorname{curl} E+0=0$.
- If E is not a gradient then neither is E^{\prime}.

de Rham cohomology

The de Rham complex

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:
- Vector fields E on Ω
- whose curls are zero, but
- which aren't gradients of a scalar field.
- Caveat: If E is a counterexample, then so is $E^{\prime}:=E+\operatorname{grad} \psi$.
- curl $E^{\prime}=\operatorname{curl} E+0=0$.
- If E is not a gradient then neither is E^{\prime}.
- In the first cohomology group H^{1}, we view E and E^{\prime} as "equivalent counterexamples".

de Rham cohomology

The de Rham complex

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

The first cohomology group H^{1}

- Informally, the first cohomology group of a domain Ω is the set of counterexamples:
- Vector fields E on Ω
- whose curls are zero, but
- which aren't gradients of a scalar field.
- Caveat: If E is a counterexample, then so is $E^{\prime}:=E+\operatorname{grad} \psi$.
- curl $E^{\prime}=\operatorname{curl} E+0=0$.
- If E is not a gradient then neither is E^{\prime}.
- In the first cohomology group H^{1}, we view E and E^{\prime} as "equivalent counterexamples".
- $\operatorname{dim} H^{1}$ counts the number of "holes" in the domain.

de Rham cohomology

The de Rham complex

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

de Rham cohomology

The de Rham complex

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

de Rham cohomology, informally

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields
de Rham cohomology, informally

- H^{1} : vector fields E whose curls are zero but which aren't gradients.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields
de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields
de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The zeroth cohomology group H^{0}

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The zeroth cohomology group H^{0}

- If grad $\phi=0$ then ϕ is constant.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The zeroth cohomology group H^{0}

- If grad $\phi=0$ then ϕ is constant.
- So $\operatorname{dim} H^{0}=1$.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The zeroth cohomology group H^{0}

- If $\operatorname{grad} \phi=0$ then ϕ is constant only for connected domains.
- So $\operatorname{dim} H^{0}=1$ for connected domains.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The zeroth cohomology group H^{0}

- If $\operatorname{grad} \phi=0$ then ϕ is constant only for connected domains.
- So $\operatorname{dim} H^{0}=1$ for connected domains.
- $\operatorname{dim} H^{0}$ counts the number of connected components of the domain.

de Rham cohomology

The de Rham complex

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The second cohomology group H^{2}

de Rham cohomology

The de Rham complex

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The second cohomology group H^{2}

- For planar domains $H^{2}=0$ (every scalar field is a curl).

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The second cohomology group H^{2}

- For planar domains $H^{2}=0$ (every scalar field is a curl).
- For a closed surface S (e.g. sphere), H^{2} is the constants.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The second cohomology group H^{2}

- For planar domains $H^{2}=0$ (every scalar field is a curl).
- For a closed surface S (e.g. sphere), H^{2} is the constants.
- If B is tangent to S then \int_{S} curl $B=0$ by Stokes's theorem.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text { grad }}$ vector fields $\xrightarrow{\text { curl }}$ scalar fields

de Rham cohomology, informally

- H^{0} : scalar fields ϕ whose gradients are zero.
- H^{1} : vector fields E whose curls are zero but which aren't gradients.
- H^{2} : scalar fields ρ which aren't curls.

The second cohomology group H^{2}

- For planar domains $H^{2}=0$ (every scalar field is a curl).
- For a closed surface S (e.g. sphere), H^{2} is the constants.
- If B is tangent to S then \int_{S} curl $B=0$ by Stokes's theorem.
- But $\int_{S} 1 \neq 0$, so 1 is not a curl.

From Euler characteristic to cohomology (1930s)

The continuous setting

Cohomology tells you the Euler characteristic
The Euler characteristic is

$$
V-E+F,
$$

From Euler characteristic to cohomology (1930s)
The continuous setting

Cohomology tells you the Euler characteristic
The Euler characteristic is

$$
\begin{gathered}
V-E+F \\
\operatorname{dim} H^{0}-\operatorname{dim} H^{1}+\operatorname{dim} H^{2} .
\end{gathered}
$$

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete gradient

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete gradient

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete gradient

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete gradient

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete gradient

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete gradient

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete gradient

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete gradient

Fundamental theorem of line integrals

$$
\int_{C} \operatorname{grad} \phi=\left.\phi\right|_{v_{0}} ^{v_{1}}
$$

for a curve C from point v_{0} to point v_{1}.

From Euler characteristic to cohomology (1930s)

 The discrete settingDiscrete curl

From Euler characteristic to cohomology (1930s)

 The discrete setting
Discrete curl

From Euler characteristic to cohomology (1930s) The discrete setting

Discrete curl

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete curl

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete curl

From Euler characteristic to cohomology (1930s)

The discrete setting

Discrete curl

From Euler characteristic to cohomology (1930s) The discrete setting

Discrete curl

Green's/Stokes's Theorem

$$
\int_{S} \operatorname{curl} E=\int_{C} E
$$

where C is the boundary of the surface S.

From Euler characteristic to cohomology (1930s)

The continuous complex (de Rham complex)

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

From Euler characteristic to cohomology (1930s)

The continuous complex (de Rham complex)

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

The discrete complex (simplicial cochain complex)

$\underset{\text { scalar fields }}{\text { discrete }} \xrightarrow{\text { grad }} \underset{\text { vector fields }}{\text { discrete }} \xrightarrow{\text { curl }} \underset{\text { scalar fields }}{\text { discrete }}$

From Euler characteristic to cohomology (1930s)

The continuous complex (de Rham complex)

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

The discrete complex (simplicial cochain complex)

$$
\begin{gathered}
\underset{\text { scalar fields }}{\text { discrete }} \xrightarrow{\text { grad }} \begin{array}{c}
\text { discrete } \\
\text { vector fields }
\end{array} \xrightarrow{\text { curl }} \begin{array}{c}
\text { discrete } \\
\text { scalar field }
\end{array} \\
\mathbb{R}^{V} \longrightarrow \mathbb{R}^{E} \longrightarrow \mathbb{R}^{F}
\end{gathered}
$$

From Euler characteristic to cohomology (1930s)

The continuous complex (de Rham complex)

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

The discrete complex (simplicial cochain complex)

$$
\begin{gathered}
\underset{\text { discrete }}{\text { scalar fields }} \xrightarrow{\text { grad }} \begin{array}{c}
\text { discrete } \\
\text { vector fields }
\end{array} \xrightarrow{\text { curl }} \begin{array}{|}
\text { cularete } \\
\text { scalar fields }
\end{array} \\
\mathbb{R}^{V} \longrightarrow \mathbb{R}^{F}
\end{gathered}
$$

Theorem (De Rham's Theorem, 1931)
 de Rham cohomology equals simplicial cohomology

From Euler characteristic to cohomology (1930s)

The continuous complex (de Rham complex)

$$
\text { scalar fields } \xrightarrow{\text { grad }} \text { vector fields } \xrightarrow{\text { curl }} \text { scalar fields }
$$

The discrete complex (simplicial cochain complex)

$$
\begin{gathered}
\underset{\text { discrete }}{\text { scalar fields }} \xrightarrow{\text { grad }} \\
\begin{array}{|c}
\text { discrete } \\
\text { vector fields }
\end{array} \xrightarrow{\text { curl }} \begin{array}{c}
\text { discrete } \\
\text { scalar fields }
\end{array} \\
\mathbb{R}^{V} \longrightarrow \mathbb{R}^{F}
\end{gathered}
$$

Theorem (De Rham's Theorem, 1931)

de Rham cohomology equals simplicial cohomology
Corollary (Euler characteristic)

$$
V-E+F=\operatorname{dim} H^{0}-\operatorname{dim} H^{1}+\operatorname{dim} H^{2}
$$

Back to finite elements

We've already seen a different discrete complex
continuous grad tangentially continuous curl discontinuous piecewise cubic $\xrightarrow{\text { grad }}$ piecewise quadratic $\xrightarrow{\text { curl }}$ piecewise linear scalar fields vector fields scalar fields

$\mathbb{R}^{V+2 E+F} \longrightarrow \mathbb{R}^{3 E+3 F}$

$\mathbb{R}^{3 F}$

Back to finite elements

We've already seen a different discrete complex

continuous grad tangentially continuous $\xrightarrow{\text { continuous }}$ grad tangentially continuous cur piecewise cubic \longrightarrow piecewise quadratic scalar fields vector fields discontinuous piecewise linear scalar fields

$$
\mathbb{R}^{V+2 E+F} \longrightarrow \mathbb{R}^{3 E+3 F}
$$

$\mathbb{R}^{3 F}$

Euler characteristic and cohomology

Back to finite elements

We've already seen a different discrete complex

continuous grad tangentially continuous consise cubic $\xrightarrow{\text { grad }}$ tangeniall

$$
\mathbb{R}^{V+2 E+F} \longrightarrow \mathbb{R}^{3 E+3 F}
$$

discontinuous piecewise linear scalar fields

$\mathbb{R}^{3 F}$

Euler characteristic and cohomology

- We saw this complex has the right Euler characteristic:

$$
(V+2 E+F)-(3 E+3 F)+3 F=V-E+F
$$

Back to finite elements

We've already seen a different discrete complex

continuous grad tangentially continuous conting grad tangentiall continus piecewise cubic \longrightarrow piecewise quadratic scalar fields

$\mathbb{R}^{V+2 E+F} \longrightarrow \mathbb{R}^{3 E+3 F}$
discontinuous piecewise linear scalar fields

$\mathbb{R}^{3 F}$

Euler characteristic and cohomology

- We saw this complex has the right Euler characteristic:

$$
(V+2 E+F)-(3 E+3 F)+3 F=V-E+F
$$

- Moreover, the cohomology is right, too.

Back to finite elements

We've already seen a different discrete complex

continuous grad tangentially continuous piecewise cubic $\xrightarrow{\text { grad }}$ piecewise quadratic scalar fields

$\mathbb{R}^{V+2 E+F} \longrightarrow \mathbb{R}^{3 E+3 F}$
discontinuous piecewise linear scalar fields

$\mathbb{R}^{3 F}$

Euler characteristic and cohomology

- We saw this complex has the right Euler characteristic:

$$
(V+2 E+F)-(3 E+3 F)+3 F=V-E+F
$$

- Moreover, the cohomology is right, too.
- That's why the spaces work well (Arnold, Falk, Winther, 2006).

Can we interpret simplicial cochains as finite elements?

Yes (Whitney, 1957)

Can we interpret simplicial cochains as finite elements?

Yes (Whitney, 1957)

Can we interpret simplicial cochains as finite elements?

Yes (Whitney, 1957)

Can we interpret simplicial cochains as finite elements?

Yes (Whitney, 1957)

Can we interpret simplicial cochains as finite elements?

Yes (Whitney, 1957)

 $\xrightarrow[\text { piecewise linear }]{\substack{\text { continuous } \\ \text { grad }}}$ scalar fields

span of Whitney forms
curl
discontinuous piecewise constant scalar fields

Barycentric coordinates

(the standard simplex)

$$
\begin{aligned}
& \left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}_{\geq 0}^{3}\right. \\
& \left.\quad \mid \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}
\end{aligned}
$$

Can we interpret simplicial cochains as finite elements?

Yes (Whitney, 1957)

continuous piecewise linar grad
piecewise linear scalar fields

span of Whitney forms
curl
discontinuous piecewise constant scalar fields

Barycentric coordinates

(the standard simplex)

$$
\begin{aligned}
& \left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}_{\geq 0}^{3}\right. \\
& \left.\quad \mid \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}
\end{aligned}
$$

Whitney one-forms:

$$
\begin{aligned}
& \lambda_{1} d \lambda_{2}-\lambda_{2} d \lambda_{1} \\
& \lambda_{2} d \lambda_{3}-\lambda_{3} d \lambda_{2} \\
& \lambda_{3} d \lambda_{1}-\lambda_{1} d \lambda_{3} .
\end{aligned}
$$

A modern language for vector calculus

The complex

A modern language for vector calculus

The complex

- Vector calculus:

$$
\begin{gathered}
\text { scalar } \\
\text { fields }
\end{gathered} \xrightarrow{\text { grad }} \text { vector } \begin{aligned}
& \text { fields }
\end{aligned} \xrightarrow{\text { curl }} \begin{gathered}
\text { vector } \\
\text { fields }
\end{gathered} \xrightarrow{\text { div }} \begin{gathered}
\text { scalar } \\
\text { fields }
\end{gathered}
$$

A modern language for vector calculus

The complex

- Vector calculus:

$$
\begin{gathered}
\text { scalar } \\
\text { fields }
\end{gathered} \xrightarrow{\text { grad }} \text { vector } \begin{aligned}
& \text { fields }
\end{aligned} \xrightarrow{\text { curl }} \begin{gathered}
\text { vector } \\
\text { fields }
\end{gathered} \xrightarrow{\text { div }} \begin{gathered}
\text { scalar } \\
\text { fields }
\end{gathered}
$$

- Cartan, 1899:

$$
\text { 0-forms } \xrightarrow{d} \text { 1-forms } \xrightarrow{d} \text { 2-forms } \xrightarrow{d} \text { 3-forms }
$$

A modern language for vector calculus

The complex

- Vector calculus:

- Cartan, 1899:

$$
\text { 0-forms } \xrightarrow{d} \text { 1-forms } \xrightarrow{d} \text { 2-forms } \xrightarrow{d} \text { 3-forms }
$$

Fundamental theorem

A modern language for vector calculus

The complex

- Vector calculus:

- Cartan, 1899:

$$
\text { 0-forms } \xrightarrow{d} \text { 1-forms } \xrightarrow{d} \text { 2-forms } \xrightarrow{d} \text { 3-forms }
$$

Fundamental theorem

- Vector calculus:

A modern language for vector calculus

The complex

- Vector calculus:

- Cartan, 1899:

$$
\text { 0-forms } \xrightarrow{d} \text { 1-forms } \xrightarrow{d} \text { 2-forms } \xrightarrow{d} \text { 3-forms }
$$

Fundamental theorem

- Vector calculus:
- fundamental theorem of calculus/line integrals,

A modern language for vector calculus

The complex

- Vector calculus:

- Cartan, 1899:

$$
\text { 0-forms } \xrightarrow{d} \text { 1-forms } \xrightarrow{d} \text { 2-forms } \xrightarrow{d} \text { 3-forms }
$$

Fundamental theorem

- Vector calculus:
- fundamental theorem of calculus/line integrals,
- Green's/Stokes's theorem,

A modern language for vector calculus

The complex

- Vector calculus:

- Cartan, 1899:

$$
\text { 0-forms } \xrightarrow{d} \text { 1-forms } \xrightarrow{d} \text { 2-forms } \xrightarrow{d} \text { 3-forms }
$$

Fundamental theorem

- Vector calculus:
- fundamental theorem of calculus/line integrals,
- Green's/Stokes's theorem,
- the divergence theorem.

A modern language for vector calculus

The complex

- Vector calculus:

- Cartan, 1899:

$$
\text { 0-forms } \xrightarrow{d} \text { 1-forms } \xrightarrow{d} \text { 2-forms } \xrightarrow{d} \text { 3-forms }
$$

Fundamental theorem

- Vector calculus:
- fundamental theorem of calculus/line integrals,
- Green's/Stokes's theorem,
- the divergence theorem.
- Cartan, 1945:

A modern language for vector calculus

The complex

- Vector calculus:

- Cartan, 1899:

$$
\text { 0-forms } \xrightarrow{d} \text { 1-forms } \xrightarrow{d} \text { 2-forms } \xrightarrow{d} \text { 3-forms }
$$

Fundamental theorem

- Vector calculus:
- fundamental theorem of calculus/line integrals,
- Green's/Stokes's theorem,
- the divergence theorem.
- Cartan, 1945:

$$
\int_{\Omega} d \omega=\int_{\partial \Omega} \omega
$$

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces
Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces
Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces
Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces
Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are piecewise polynomial of degree at most r, and

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces
Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are piecewise polynomial of degree at most r, and
- are tangentially continuous.

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces

Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are piecewise polynomial of degree at most r, and
- are tangentially continuous.

Example

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces

Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are piecewise polynomial of degree at most r, and
- are tangentially continuous.

Example

$$
\mathcal{P}_{r} \Lambda^{0}(\mathcal{T})
$$

continuous

piecewise polynomial scalar fields

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces

Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are piecewise polynomial of degree at most r, and
- are tangentially continuous.

Example

$\mathcal{P}_{r} \wedge^{0}(\mathcal{T})$
$\mathcal{P}_{r} \Lambda^{1}(\mathcal{T})$

continuous
 piecewise polynomial scalar fields tangentially continuous piecewise polynomial vector fields

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces

Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are piecewise polynomial of degree at most r, and
- are tangentially continuous.

Example

$$
\begin{gathered}
\mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) \\
\mathcal{P}_{r} \Lambda^{1}(\mathcal{T}) \\
\mathcal{P}_{r} \Lambda^{n-1}(\mathcal{T})
\end{gathered}
$$

continuous

piecewise polynomial scalar fields tangentially continuous piecewise polynomial vector fields normally continuous piecewise polynomial vector fields

Finite element exterior calculus (AFW, 2006)

The $\mathcal{P}_{r} \wedge^{k}$ spaces

Definition (the $\mathcal{P}_{r} \wedge^{k}$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are piecewise polynomial of degree at most r, and
- are tangentially continuous.

Example

$$
\begin{array}{cc}
\mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) & \text { continuous } \\
& \text { piecewise polynomial scalar fields } \\
\mathcal{P}_{r} \Lambda^{1}(\mathcal{T}) & \text { tangentially continuous } \\
\text { piecewise polynomial vector fields } \\
\mathcal{P}_{r} \Lambda^{n-1}(\mathcal{T}) & \text { normally continuous }
\end{array}
$$

Complexes revisited

We've seen

Complexes revisited

We've seen

continuous grad tangentially continuous curl discontinuous piecewise cubic $\xrightarrow{ }$ piecewise quadratic $\xrightarrow{\text { curl }}$ piecewise linear scalar fields vector fields

Complexes revisited

We've seen

continuous grad tangentially continuous
 scalar fields vector fields

$$
\begin{equation*}
\mathcal{P}_{3} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{2} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{1} \Lambda^{2}(\mathcal{T}) \tag{1}
\end{equation*}
$$

discontinuous scalar fields

$$
6
$$

-

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \Lambda^{k}(T)$.

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \Lambda^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \Lambda^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most $r-1$. Call the span of these $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \wedge^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most $r-1$. Call the span of these $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.
- So, $\mathcal{P}_{r-1} \Lambda^{k}(T) \subseteq \mathcal{P}_{r}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{r} \Lambda^{k}(T)$.

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \wedge^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most $r-1$. Call the span of these $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.
- So, $\mathcal{P}_{r-1} \Lambda^{k}(T) \subseteq \mathcal{P}_{r}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{r} \Lambda^{k}(T)$.

Definition (the $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces on a triangulation)

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \wedge^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most $r-1$. Call the span of these $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.
- So, $\mathcal{P}_{r-1} \Lambda^{k}(T) \subseteq \mathcal{P}_{r}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{r} \Lambda^{k}(T)$.

Definition (the $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces on a triangulation)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \wedge^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most $r-1$. Call the span of these $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.
- So, $\mathcal{P}_{r-1} \Lambda^{k}(T) \subseteq \mathcal{P}_{r}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{r} \Lambda^{k}(T)$.

Definition (the $\mathcal{P}_{r}^{-} \wedge^{k}$ spaces on a triangulation)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r}^{-} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \wedge^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most $r-1$. Call the span of these $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.
- So, $\mathcal{P}_{r-1} \Lambda^{k}(T) \subseteq \mathcal{P}_{r}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{r} \Lambda^{k}(T)$.

Definition (the $\mathcal{P}_{r}^{-} \wedge^{k}$ spaces on a triangulation)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r}^{-} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are in $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$ for each element T of the triangulation, and

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \wedge^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most $r-1$. Call the span of these $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.
- So, $\mathcal{P}_{r-1} \Lambda^{k}(T) \subseteq \mathcal{P}_{r}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{r} \Lambda^{k}(T)$.

Definition (the $\mathcal{P}_{r}^{-} \wedge^{k}$ spaces on a triangulation)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r}^{-} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are in $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$ for each element T of the triangulation, and
- are tangentially continuous.

Finite element exterior calculus

The $\mathcal{P}_{r}^{-} \Lambda^{k}$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_{1}^{-} \wedge^{k}(T)$.
- Note: $\mathcal{P}_{0} \Lambda^{k}(T) \subseteq \mathcal{P}_{1}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{1} \Lambda^{k}(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most $r-1$. Call the span of these $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$.
- So, $\mathcal{P}_{r-1} \Lambda^{k}(T) \subseteq \mathcal{P}_{r}^{-} \Lambda^{k}(T) \subseteq \mathcal{P}_{r} \Lambda^{k}(T)$.

Definition (the $\mathcal{P}_{r}^{-} \wedge^{k}$ spaces on a triangulation)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_{r}^{-} \Lambda^{k}(\mathcal{T})$ be the space of k-forms that
- are in $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$ for each element T of the triangulation, and
- are tangentially continuous.

Duality between \mathcal{P} and \mathcal{P}^{-}

Complexes revisited

We've also seen

Complexes revisited

We've also seen

Complexes revisited

We've also seen

$$
\underset{\substack{\text { piecewise linear } \\
\text { scalar fields }}}{\text { continuous grad }} \text { Whitney forms } \xrightarrow{\text { curl }} \begin{gathered}
\text { discontinuous } \\
\text { piecewise constant } \\
\text { scalar fields }
\end{gathered}
$$

$$
\mathcal{P}_{1}^{-} \Lambda^{0}(\mathcal{T})
$$

\square

$\xrightarrow{d} \mathcal{P}_{1}^{-} \Lambda^{2}(\mathcal{T})$

More complexes

Theorem (Arnold, Falk, Winther, 2006)

For a triangulation \mathcal{T}, the cohomology of the complexes

$$
\begin{aligned}
& \mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n}(\mathcal{T}) \\
& \mathcal{P}_{r}^{-} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n}(\mathcal{T})
\end{aligned}
$$

agrees with de Rham cohomology (provided $r \geq n$ in the first line).

More complexes

Theorem (Arnold, Falk, Winther, 2006)

For a triangulation \mathcal{T}, the cohomology of the complexes

$$
\begin{aligned}
& \mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n}(\mathcal{T}) \\
& \mathcal{P}_{r}^{-} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n}(\mathcal{T})
\end{aligned}
$$

agrees with de Rham cohomology (provided $r \geq n$ in the first line).

Remark

The second line with $r=1$ is isomorphic to simplicial cochains.

More complexes

Theorem (Arnold, Falk, Winther, 2006)

For a triangulation \mathcal{T}, the cohomology of the complexes

$$
\begin{aligned}
& \mathcal{P}_{r} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r-n} \Lambda^{n}(\mathcal{T}) \\
& \mathcal{P}_{r}^{-} \Lambda^{0}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{1}(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{n}(\mathcal{T})
\end{aligned}
$$

agrees with de Rham cohomology (provided $r \geq n$ in the first line).

Remark

The second line with $r=1$ is isomorphic to simplicial cochains.
Theorem (Arnold, Falk, Winther, 2006)
We can "mix and match" using any of the maps

$$
\begin{array}{ll}
\mathcal{P}_{r} \Lambda^{k}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{k+1}(\mathcal{T}), & \mathcal{P}_{r} \Lambda^{k}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{k+1}(\mathcal{T}) \\
\mathcal{P}_{r}^{-} \Lambda^{k}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r}^{-} \Lambda^{k+1}(\mathcal{T}), & \mathcal{P}_{r}^{-} \Lambda^{k}(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{k+1}(\mathcal{T})
\end{array}
$$

击 Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus, homological techniques, and applications.
Acta Numer., 15:1-155, 2006.
围 Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus: from Hodge theory to numerical stability.
Bull. Amer. Math. Soc. (N.S.), 47(2):281-354, 2010.

How do finite element spaces yield numerical methods?

Recall our sample problem

How do finite element spaces yield numerical methods?

Recall our sample problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ vanishing on $\partial \Omega$ such that

$$
\Delta u=f
$$

How do finite element spaces yield numerical methods?

Recall our sample problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ vanishing on $\partial \Omega$ such that

$$
\Delta u=f
$$

- Equivalently,

$$
\int_{\Omega}(\Delta u) v=\int_{\Omega} f v \quad \forall v \text { vanishing on } \partial \Omega .
$$

How do finite element spaces yield numerical methods?

Recall our sample problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ vanishing on $\partial \Omega$ such that

$$
\Delta u=f
$$

- Equivalently,

$$
\int_{\Omega}(\Delta u) v=\int_{\Omega} f v \quad \forall v \text { vanishing on } \partial \Omega .
$$

- Intergating by parts,
$-\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v=\int_{\Omega} f v \quad \forall v$ vanishing on $\partial \Omega$.

How do finite element spaces yield numerical methods?

Recall our sample problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ vanishing on $\partial \Omega$ such that

$$
\Delta u=f
$$

- Equivalently,

$$
\int_{\Omega}(\Delta u) v=\int_{\Omega} f v \quad \forall v \text { vanishing on } \partial \Omega .
$$

- Intergating by parts,

$$
\begin{equation*}
-\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v=\int_{\Omega} f v \quad \forall v \text { vanishing on } \partial \Omega . \tag{1}
\end{equation*}
$$

Galerkin method

How do finite element spaces yield numerical methods?

Recall our sample problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ vanishing on $\partial \Omega$ such that

$$
\Delta u=f
$$

- Equivalently,

$$
\int_{\Omega}(\Delta u) v=\int_{\Omega} f v \quad \forall v \text { vanishing on } \partial \Omega .
$$

- Intergating by parts,

$$
\begin{equation*}
-\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v=\int_{\Omega} f v \quad \forall v \text { vanishing on } \partial \Omega . \tag{1}
\end{equation*}
$$

Galerkin method

- Given f, solve (1) for u, where u and v are restricted to be in the finite element space.

How do finite element spaces yield numerical methods?

Recall our sample problem

- Given $f: \Omega \rightarrow \mathbb{R}$, find $u: \Omega \rightarrow \mathbb{R}$ vanishing on $\partial \Omega$ such that

$$
\Delta u=f
$$

- Equivalently,

$$
\int_{\Omega}(\Delta u) v=\int_{\Omega} f v \quad \forall v \text { vanishing on } \partial \Omega .
$$

- Intergating by parts,

$$
\begin{equation*}
-\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v=\int_{\Omega} f v \quad \forall v \text { vanishing on } \partial \Omega . \tag{1}
\end{equation*}
$$

Galerkin method

- Given f, solve (1) for u, where u and v are restricted to be in the finite element space.
- Get a finite-dimensional linear system of equations.

Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator
On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen if we do not respect cohomology (AFW, 2010)

Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen if we do not respect cohomology (AFW, 2010)

- Using vector fields with full continuity yields false eigenvalue $\lambda=6$.

Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen if we do not respect cohomology (AFW, 2010)

- Using vector fields with full continuity yields false eigenvalue $\lambda=6$.
- In contrast, using the spaces we've discussed yields the correct spectrum.

Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen if we do not respect cohomology (AFW, 2010)

- Using vector fields with full continuity yields false eigenvalue $\lambda=6$.
- In contrast, using the spaces we've discussed yields the correct spectrum.

How does cohomology play a role?

Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen if we do not respect cohomology (AFW, 2010)

- Using vector fields with full continuity yields false eigenvalue $\lambda=6$.
- In contrast, using the spaces we've discussed yields the correct spectrum.

How does cohomology play a role?

- $\operatorname{dim}(\operatorname{kercurl})=\infty$, so zero eigenspace hard to control.

Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u=\lambda u$.

Bad things happen if we do not respect cohomology (AFW, 2010)

- Using vector fields with full continuity yields false eigenvalue $\lambda=6$.
- In contrast, using the spaces we've discussed yields the correct spectrum.

How does cohomology play a role?

- $\operatorname{dim}(\operatorname{kercurl})=\infty$, so zero eigenspace hard to control.
- Can control if kercurl = im grad holds on the discrete level.

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
- Otherwise, the quantities will be conserved only approximately and may drift over time.

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
- Otherwise, the quantities will be conserved only approximately and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
- Otherwise, the quantities will be conserved only approximately and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

- curl u invariant under $u \mapsto u+\operatorname{grad} f$

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
- Otherwise, the quantities will be conserved only approximately and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

- curl u invariant under $u \mapsto u+\operatorname{grad} f$
- \Rightarrow weighted average $\int \rho f$ conserved (ρ is charge).

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
- Otherwise, the quantities will be conserved only approximately and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

- curl u invariant under $u \mapsto u+\operatorname{grad} f$
- \Rightarrow weighted average $\int \rho f$ conserved (ρ is charge).
- continuous setting: all f allowed $\Rightarrow \rho$ conserved.

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
- Otherwise, the quantities will be conserved only approximately and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

- curl u invariant under $u \mapsto u+\operatorname{grad} f$
- \Rightarrow weighted average $\int \rho f$ conserved (ρ is charge).
- continuous setting: all f allowed $\Rightarrow \rho$ conserved.
- discrete setting: only f in finite element space (Nédélec, 1980).

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
- translation invariance \Rightarrow conservation of momentum
- rotation invariance \Rightarrow conservation of angular momentum
- time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
- Otherwise, the quantities will be conserved only approximately and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

- curl u invariant under $u \mapsto u+\operatorname{grad} f$
- \Rightarrow weighted average $\int \rho f$ conserved (ρ is charge).
- continuous setting: all f allowed $\Rightarrow \rho$ conserved.
- discrete setting: only f in finite element space (Nédélec, 1980).
- can conserve ρ even in discrete setting (—, Stern, 2021).

Further directions

Representation theory

Bases for scalar fields

Further directions

Representation theory
Bases for scalar fields

- Recall barycentric coordinates:

$$
\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}_{\geq 0}^{3} \mid \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}
$$

Further directions

Representation theory

Bases for scalar fields

- Recall barycentric coordinates:

$$
\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}_{\geq 0}^{3} \mid \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}
$$

- Quadratic scalar fields have monomial basis

$$
\lambda_{1}^{2}, \quad \lambda_{2}^{2}, \quad \lambda_{3}^{2}, \quad \lambda_{1} \lambda_{2}, \quad \lambda_{2} \lambda_{3}, \quad \lambda_{3} \lambda_{1} .
$$

Further directions

Representation theory

Bases for scalar fields

- Recall barycentric coordinates:

$$
\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}_{\geq 0}^{3} \mid \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}
$$

- Quadratic scalar fields have monomial basis

$$
\lambda_{1}^{2}, \quad \lambda_{2}^{2}, \quad \lambda_{3}^{2}, \quad \lambda_{1} \lambda_{2}, \quad \lambda_{2} \lambda_{3}, \quad \lambda_{3} \lambda_{1} .
$$

Symmetry

Further directions

Representation theory

Bases for scalar fields

- Recall barycentric coordinates:

$$
\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}_{\geq 0}^{3} \mid \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}
$$

- Quadratic scalar fields have monomial basis $\lambda_{1}^{2}, \quad \lambda_{2}^{2}, \quad \lambda_{3}^{2}, \quad \lambda_{1} \lambda_{2}, \quad \lambda_{2} \lambda_{3}, \quad \lambda_{3} \lambda_{1}$.

Symmetry

- For scalar fields, the monomial basis is invariant under permuting $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

Further directions

Representation theory

Bases for scalar fields

- Recall barycentric coordinates:

$$
\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}_{\geq 0}^{3} \mid \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}
$$

- Quadratic scalar fields have monomial basis $\lambda_{1}^{2}, \quad \lambda_{2}^{2}, \quad \lambda_{3}^{2}, \quad \lambda_{1} \lambda_{2}, \quad \lambda_{2} \lambda_{3}, \quad \lambda_{3} \lambda_{1}$.

Symmetry

- For scalar fields, the monomial basis is invariant under permuting $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
- For vector fields, such an invariant basis may or may not exist, even up to sign.

Further directions

Representation theory

Bases for scalar fields

- Recall barycentric coordinates:

$$
\left\{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \mathbb{R}_{\geq 0}^{3} \mid \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}
$$

- Quadratic scalar fields have monomial basis $\lambda_{1}^{2}, \quad \lambda_{2}^{2}, \quad \lambda_{3}^{2}, \quad \lambda_{1} \lambda_{2}, \quad \lambda_{2} \lambda_{3}, \quad \lambda_{3} \lambda_{1}$.

Symmetry

- For scalar fields, the monomial basis is invariant under permuting $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
- For vector fields, such an invariant basis may or may not exist, even up to sign.
- In 2D and 3D, depends on the type of finite element space (e.g. $\mathcal{P} \Lambda^{1}, \mathcal{P}^{-} \Lambda^{2}$), and the polynomial degree modulo 3 (Licht, 2019; —, 2023).

Further directions

Riemannian geometry

So far we've discussed

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
- Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
- Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).
- Higher polynomial degree (Li, 2018).

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
- Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).
- Higher polynomial degree (Li, 2018).
- Must understand curvature:

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
- Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).
- Higher polynomial degree (Li, 2018).
- Must understand curvature:
- Lowest order scalar curvature is just angle defect.

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
- Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).
- Higher polynomial degree (Li, 2018).
- Must understand curvature:
- Lowest order scalar curvature is just angle defect.
- 2D: Gauss-Bonnett. General dimension: Regge, 1961.

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
- Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).
- Higher polynomial degree (Li, 2018).
- Must understand curvature:
- Lowest order scalar curvature is just angle defect.
- 2D: Gauss-Bonnett. General dimension: Regge, 1961.
- Several papers towards full Riemann curvature tensor in general piecewise polynomial/smooth setting:

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
- differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
- Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).
- Higher polynomial degree (Li, 2018).
- Must understand curvature:
- Lowest order scalar curvature is just angle defect.
- 2D: Gauss-Bonnett. General dimension: Regge, 1961.
- Several papers towards full Riemann curvature tensor in general piecewise polynomial/smooth setting:
- various combinations of -, Gawlik, Neunteufel, and others; 2019-2023 and in preparation.

Thank you

