The Combinatorics of Finite Element Methods

Yakov Berchenko-Kogan

Florida Institute of Technology

August 28, 2023

Yakov Berchenko-Kogan The Combinatorics of Finite Element Methods

Outline

Is From finite elements to the Euler characteristic.

- Finite element spaces let us numerically solve PDEs.
- Using naïve finite element spaces can give us wrong answers.
- Finite element spaces that do work well are related to the Euler characteristic V E + F.

If From the Euler characteristic to cohomology (1500s-1930s).

- An introduction to Euler characteristic and cohomology.
- Both numerical analysis and cohomology are ways of going between the continuous world and the discrete world.
 - Some finite element spaces developed by numerical analysts in the 1970s and 1980s were actually rediscoveries of spaces developed by geometers decades earlier.
- From cohomology to finite elements (Arnold, Falk, Winther, 2006–2010).
 - Finite element spaces that respect cohomology work well.
 - Finite element spaces that do not respect cohomology might give wrong answers.

Numerically solving PDEs

Sample Problem

• Given $f: \Omega \to \mathbb{R}$, find $u: \Omega \to \mathbb{R}$ such that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f$$

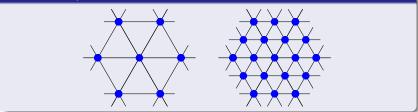
and u vanishes on the boundary.

Discretization

- To solve numerically, we must discretize.
- We need a finite-dimensional space of functions that "approximates" the full infinite-dimensional space of possible *u*.

Finite-dimensional function spaces

Continuous piecewise linear functions to $\mathbb R$



Continuous piecewise polynomial functions to ${\ensuremath{\mathbb R}}$

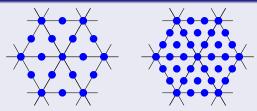
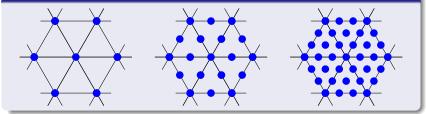


Figure: Piecewise quadratic (left) and piecewise cubic (right)

Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions



Degrees of freedom (DOFs)

- One value per degree of freedom (blue dot)
 - yields a unique function on each triangle, and
 - enforces continuity between adjacent triangles.

Piecewise linear Piecewise quadratic Piecewise cubic

$$\mathbb{R}^{V}$$
$$\mathbb{R}^{V+E}$$
$$\mathbb{R}^{V+2E+F}$$

What about vector fields?

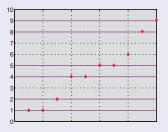
A naïve approach

Use continuous piecewise polynomial vector fields.

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u = \lambda u$.

Bad things happen with the naïve approach (AFW, 2010)



- Using vector fields with full continuity yields false eigenvalue λ = 6.
- To get the right eigenvalues, we need better finite element spaces of vector fields.

Gradients of piecewise smooth scalar fields

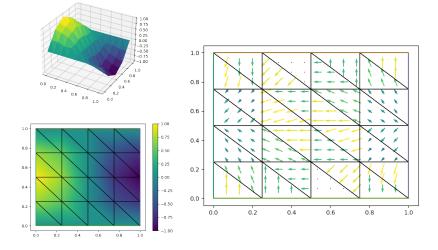


Figure: A piecewise linear function (left) and its gradient (right)

Continuity conditions

• We want only tangential continuity, not full continuity.

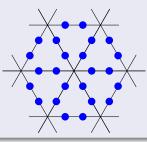
Figure: Full continuity (left) vs. tangential continuity (right)

- Why do these spaces work better?
 - Gradients of continuous piecewise smooth scalar fields only have tangential continuity.
 - Gradients of "valid objects" should be "valid objects".
 - Having well-defined line integrals requires only tangential continuity.

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

- Values should
 - uniquely specify a linear vector field on each triangle, and
 - enforce tangential continuity between adjacent triangles.

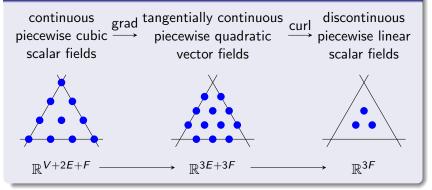


Higher degree?

Periodic Table of the Finite Elements

Complexes

A discrete complex



Euler characteristic

• This complex has the right Euler characteristic:

$$(V + 2E + F) - (3E + 3F) + 3F = V - E + F.$$

Euler characteristic

V - E + F = 2 (Maurolico, 1537)

Name	Image	Vertices V	Edges E	Faces F	Euler characteristic: $\chi = V - E + F$
Tetrahedron		4	6	4	2
Hexahedron or cube	T	8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
Icosahedron	\bigcirc	12	30	20	2

Figure: Wikipedia, "Euler characteristic"

Works for all convex polyhedra

Soccer ball:

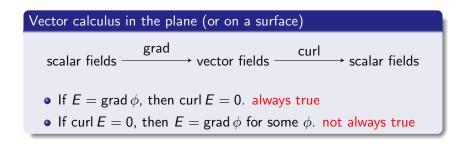
$$V - E + F = 60 - 90 + 32 = 2.$$

Euler characteristic for other shapes

Name	Image	х
Interval	••	1
Circle	\bigcirc	0
Disk		1
Sphere		2
Torus (Product of two circles)	\bigcirc	0
Double torus	8	-2
Triple torus	80	-4

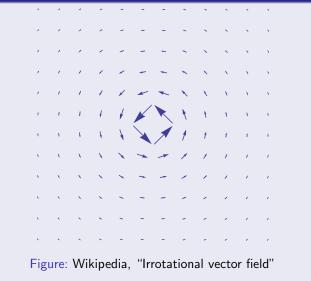
Figure: Wikipedia, "Euler characteristic"

The continuous setting



$\operatorname{curl} E = 0 \operatorname{but} E \neq \operatorname{grad} \phi$

The electric field around a solenoid



Yakov Berchenko-Kogan The Combinatorics of Finite Element Methods

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text{grad}}$ vector fields $\xrightarrow{\text{curl}}$ scalar fields

The first cohomology group H^1

- Informally, the first cohomology group of a domain $\boldsymbol{\Omega}$ is the set of counterexamples:
 - Vector fields E on Ω
 - whose curls are zero, but
 - which aren't gradients of a scalar field.
- Caveat: If *E* is a counterexample, then so is $E' := E + \operatorname{grad} \psi$.
 - $\operatorname{curl} E' = \operatorname{curl} E + 0 = 0.$
 - If E is not a gradient then neither is E'.
- In the first cohomology group H¹, we view E and E' as "equivalent counterexamples".
- dim H^1 counts the number of "holes" in the domain.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\text{grad}}$ vector fields $\xrightarrow{\text{curl}}$ scalar fields

de Rham cohomology, informally

- H^0 : scalar fields ϕ whose gradients are zero.
- *H*¹: vector fields *E* whose curls are zero but which aren't gradients.
- H^2 : scalar fields ρ which aren't curls.

The zeroth cohomology group H^0

- If grad $\phi = 0$ then ϕ is constant only for connected domains.
- So dim $H^0 = 1$ for connected domains.
- dim *H*⁰ counts the number of connected components of the domain.

de Rham cohomology

The de Rham complex

scalar fields $\xrightarrow{\quad \text{grad} \quad }$ vector fields $\xrightarrow{\quad \text{curl} \quad }$ scalar fields

de Rham cohomology, informally

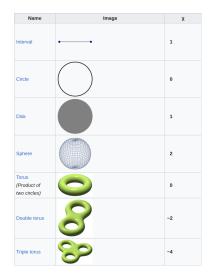
- H^0 : scalar fields ϕ whose gradients are zero.
- *H*¹: vector fields *E* whose curls are zero but which aren't gradients.
- H^2 : scalar fields ρ which aren't curls.

The second cohomology group H^2

- For planar domains $H^2 = 0$ (every scalar field is a curl).
- For a closed surface S (e.g. sphere), H^2 is the constants.
 - If B is tangent to S then $\int_{S} \operatorname{curl} B = 0$ by Stokes's theorem.
 - But $\int_{S} 1 \neq 0$, so 1 is not a curl.

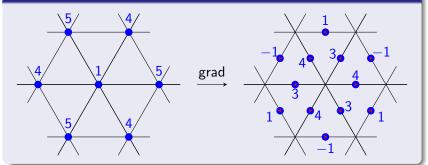
The continuous setting

Cohomology tells you the
Euler characteristic
The Euler characteristic is
$$V - E + F$$
,
 $\dim H^0 - \dim H^1 + \dim H^2$.



The discrete setting

Discrete gradient

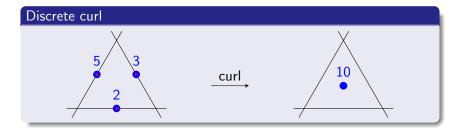


Fundamental theorem of line integrals

$$\int_{\mathcal{C}} \operatorname{grad} \phi = \phi \Big|_{v_0}^{v_2}$$

for a curve C from point v_0 to point v_1 .

The discrete setting



Green's/Stokes's Theorem

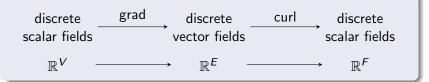
$$\int_{S} \operatorname{curl} E = \int_{C} E$$

where C is the boundary of the surface S.

The continuous complex (de Rham complex)

scalar fields
$$\xrightarrow{\text{grad}}$$
 vector fields $\xrightarrow{\text{curl}}$ scalar fields

The discrete complex (simplicial cochain complex)



Theorem (De Rham's Theorem, 1931)

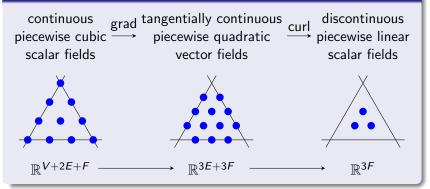
de Rham cohomology equals simplicial cohomology

Corollary (Euler characteristic)

$$V - E + F = \dim H^0 - \dim H^1 + \dim H^2$$

Back to finite elements

We've already seen a different discrete complex



Euler characteristic and cohomology

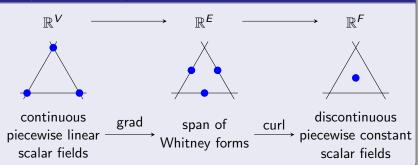
• We saw this complex has the right Euler characteristic:

$$(V + 2E + F) - (3E + 3F) + 3F = V - E + F.$$

- Moreover, the cohomology is right, too.
 - That's why the spaces work well (Arnold, Falk, Winther, 2006).

Can we interpret simplicial cochains as finite elements?

Yes (Whitney, 1957)



Barycentric coordinates (the standard simplex)

$$egin{aligned} ig(\lambda_1,\lambda_2,\lambda_3)\in\mathbb{R}^3_{\geq 0}\ &\mid\lambda_1+\lambda_2+\lambda_3=1 ig\} \end{aligned}$$

Whitney one-forms:

$$egin{aligned} &\lambda_1\,d\lambda_2-\lambda_2\,d\lambda_1,\ &\lambda_2\,d\lambda_3-\lambda_3\,d\lambda_2,\ &\lambda_3\,d\lambda_1-\lambda_1\,d\lambda_3. \end{aligned}$$

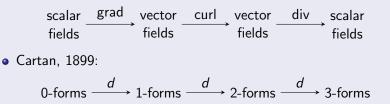
Yakov Berchenko-Kogan

The Combinatorics of Finite Element Methods

A modern language for vector calculus

The complex

• Vector calculus:



Fundamental theorem

- Vector calculus:
 - fundamental theorem of calculus/line integrals,
 - Green's/Stokes's theorem,
 - the divergence theorem.
- Cartan, 1945:

$$\int_{\Omega} d\omega = \int_{\partial \Omega} \omega.$$

Finite element exterior calculus (AFW, 2006) The $\mathcal{P}_r \Lambda^k$ spaces

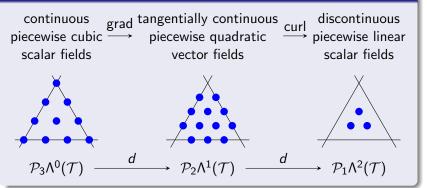
Definition (the $\mathcal{P}_r \Lambda^k$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_r \Lambda^k(\mathcal{T})$ be the space of k-forms that
 - are piecewise polynomial of degree at most r, and
 - are tangentially continuous.

Example

$\mathcal{P}_r \Lambda^0(\mathcal{T})$	continuous				
$P_r (T)$	piecewise polynomial scalar fields				
$\mathcal{P}_r \Lambda^1(\mathcal{T})$	tangentially continuous				
	piecewise polynomial vector fields				
$\mathcal{P}_r \Lambda^{n-1}(\mathcal{T})$	normally continuous				
	piecewise polynomial vector fields				
$\mathcal{P}_r \Lambda^n(\mathcal{T})$	discontinuous				
	piecewise polynomial scalar fields				

We've seen



Finite element exterior calculus The $\mathcal{P}_r^- \Lambda^k$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_1^- \Lambda^k(T)$.
 - Note: $\mathcal{P}_0 \Lambda^k(T) \subseteq \mathcal{P}_1^- \Lambda^k(T) \subseteq \mathcal{P}_1 \Lambda^k(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most r 1. Call the span of these $\mathcal{P}_r^- \Lambda^k(\mathcal{T})$.

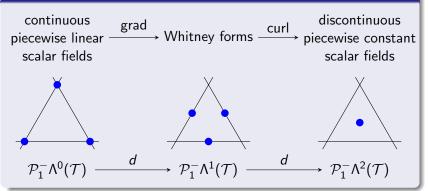
• So,
$$\mathcal{P}_{r-1}\Lambda^k(T) \subseteq \mathcal{P}_r^-\Lambda^k(T) \subseteq \mathcal{P}_r\Lambda^k(T)$$
.

Definition (the $\mathcal{P}_r^- \Lambda^k$ spaces on a triangulation)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_r^- \Lambda^k(\mathcal{T})$ be the space of *k*-forms that
 - are in $\mathcal{P}_r^- \Lambda^k(T)$ for each element T of the triangulation, and
 - are tangentially continuous.

Duality between ${\mathcal P}$ and ${\mathcal P}^-$

We've also seen



More complexes

Theorem (Arnold, Falk, Winther, 2006)

For a triangulation \mathcal{T} , the cohomology of the complexes

$$\mathcal{P}_{r}\Lambda^{0}(\mathcal{T}) \stackrel{d}{\longrightarrow} \mathcal{P}_{r-1}\Lambda^{1}(\mathcal{T}) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \mathcal{P}_{r-n}\Lambda^{n}(\mathcal{T})$$

$$\mathcal{P}_r^- \Lambda^0(\mathcal{T}) \stackrel{d}{\longrightarrow} \mathcal{P}_r^- \Lambda^1(\mathcal{T}) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \mathcal{P}_r^- \Lambda^n(\mathcal{T})$$

agrees with de Rham cohomology (provided $r \ge n$ in the first line).

Remark

The second line with r = 1 is isomorphic to simplicial cochains.

Theorem (Arnold, Falk, Winther, 2006)

We can "mix and match" using any of the maps $\mathcal{P}_r \Lambda^k(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{k+1}(\mathcal{T}), \qquad \mathcal{P}_r \Lambda^k(\mathcal{T}) \xrightarrow{d} \mathcal{P}_r^- \Lambda^{k+1}(\mathcal{T})$ $\mathcal{P}_r^- \Lambda^k(\mathcal{T}) \xrightarrow{d} \mathcal{P}_r^- \Lambda^{k+1}(\mathcal{T}), \qquad \mathcal{P}_r^- \Lambda^k(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{k+1}(\mathcal{T})$ Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus, homological techniques, and applications.

Acta Numer., 15:1–155, 2006.

Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus: from Hodge theory to numerical stability.

Bull. Amer. Math. Soc. (N.S.), 47(2):281-354, 2010.

How do finite element spaces yield numerical methods?

Recall our sample problem

• Given $f: \Omega \to \mathbb{R}$, find $u: \Omega \to \mathbb{R}$ vanishing on $\partial \Omega$ such that

$$\Delta u = f$$
.

Equivalently,

$$\int_{\Omega} (\Delta u) v = \int_{\Omega} f v \qquad orall v ext{ vanishing on } \partial \Omega.$$

Intergating by parts,

$$-\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v = \int_{\Omega} f v \quad \forall v \text{ vanishing on } \partial \Omega. \quad (1)$$

Galerkin method

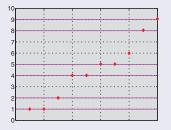
- Given f, solve (1) for u, where u and v are restricted to be in the finite element space.
- Get a finite-dimensional linear system of equations.

Bad things happen if we don't respect cohomology

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u = \lambda u$.

Bad things happen if we do not respect cohomology (AFW, 2010)



- Using vector fields with full continuity yields false eigenvalue $\lambda = 6$.
- In contrast, using the spaces we've discussed yields the correct spectrum.

How does cohomology play a role?

- dim(ker curl) = ∞ , so zero eigenspace hard to control.
- Can control if ker curl = im grad holds on the discrete level.

Good things happen if we do respect cohomology

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
 - $\bullet\,$ translation invariance $\Rightarrow\,$ conservation of momentum
 - $\bullet\,$ rotation invariance \Rightarrow conservation of angular momentum
 - time-translation invariance \Rightarrow conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
 - Otherwise, the quantities will be conserved only approximately and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

- curl u invariant under $u \mapsto u + \operatorname{grad} f$
- \Rightarrow weighted average $\int \rho f$ conserved (ρ is charge).
 - continuous setting: all f allowed $\Rightarrow \rho$ conserved.
 - discrete setting: only f in finite element space (Nédélec, 1980).
- can conserve ρ even in discrete setting (—, Stern, 2021).

Further directions

Representation theory

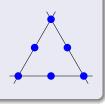
Bases for scalar fields

• Recall barycentric coordinates:

$$\left\{ \left(\lambda_1,\lambda_2,\lambda_3
ight)\in\mathbb{R}^3_{\geq0}\mid\lambda_1+\lambda_2+\lambda_3=1
ight\}.$$

• Quadratic scalar fields have monomial basis

$$\lambda_1^2, \quad \lambda_2^2, \quad \lambda_3^2, \quad \lambda_1\lambda_2, \quad \lambda_2\lambda_3, \quad \lambda_3\lambda_1.$$



Symmetry

- For scalar fields, the monomial basis is invariant under permuting λ₁, λ₂, λ₃.
- For vector fields, such an invariant basis may or may not exist, even up to sign.
 - In 2D and 3D, depends on the type of finite element space (e.g. $\mathcal{P}\Lambda^1$, $\mathcal{P}^-\Lambda^2$), and the polynomial degree modulo 3 (Licht, 2019; —, 2023).

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
 - differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
 - Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).
 - Higher polynomial degree (Li, 2018).
- Must understand curvature:
 - Lowest order scalar curvature is just angle defect.
 - 2D: Gauss-Bonnett. General dimension: Regge, 1961.
 - Several papers towards full Riemann curvature tensor in general piecewise polynomial/smooth setting:
 - various combinations of —, Gawlik, Neunteufel, and others; 2019–2023 and in preparation.

Thank you