The Combinatorics of Finite Element Methods

Yakov Berchenko-Kogan

Florida Institute of Technology

August 2, 2023

Yakov Berchenko-Kogan The Combinatorics of Finite Element Methods

Outline

- What is the finite element method?
 - A method for numerically solving partial differential equations.
- Why am I talking about PDEs / applied math at a combinatorics / number theory conference?
 - Euler characteristic / simplicial cohomology naturally arises in the study of finite elements.
 - Finite element exterior calculus (Arnold, Falk, Winther, 2006).
- That's a cool connection, but does understanding cohomology actually improve numerical methods?
 - Yes.
- Has anything interesting happened since then?
 - Yes.

Numerically solving PDEs

Sample Problem

• Given $f: \Omega \to \mathbb{R}$, find $u: \Omega \to \mathbb{R}$ such that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f$$

and u vanishes on the boundary.

Discretization

- To solve numerically, we must discretize.
- We need a finite-dimensional space of functions that "approximates" the full infinite-dimensional space of possible *u*.

Finite-dimensional function spaces

Continuous piecewise linear functions to $\mathbb R$

Continuous piecewise polynomial functions to ${\ensuremath{\mathbb R}}$

Figure: Piecewise quadratic (left) and piecewise cubic (right)

Degrees of freedom

Piecewise linear/quadratic/cubic continuous scalar-valued functions

Degrees of freedom (DOFs)

- One value per degree of freedom (blue dot)
 - yields a unique function on each triangle, and
 - enforces continuity between adjacent triangles.

Piecewise linear Piecewise quadratic Piecewise cubic

$$\mathbb{R}^{V}$$
$$\mathbb{R}^{V+E}$$
$$\mathbb{R}^{V+2E+F}$$

Finite-dimensional spaces of vector fields

Continuity conditions

- If we view a vector field as a tuple of scalar fields, we can use the above finite-dimensional spaces of scalar-valued functions.
 - Doing so yields continous piecewise polynomial vector fields.
- But we want only tangential continuity, not full continuity.

Figure: Full continuity (left) vs. tangential continuity (right)

- Why do we only want tangential continuity?
 - Gradients of continuous piecewise smooth scalar fields only have tangential continuity.
 - Gradients of "valid objects" should be "valid objects".
 - Having well-defined line integrals requires only tangential continuity.

Gradients of piecewise smooth scalar fields

Figure: A piecewise linear function (left) and its gradient (right)

Degrees of freedom (DOFs)

DOFs of piecewise linear vector fields with tangential continuity?

- Values should
 - uniquely specify a linear vector field on each triangle, and
 - enforce tangential continuity between adjacent triangles.

Higher degree?

Periodic Table of the Finite Elements

Complexes and cohomology

A discrete subcomplex of the de Rham complex

Euler characteristic and cohomology of triangulated surfaces

• This complex has the right Euler characteristic:

(V + 2E + F) - (3E + 3F) + 3F = V - E + F.

• The cohomology agrees with simplicial/de Rham cohomology.

• (Arnold, Falk, Winther, 2010).

Whitney forms (Whitney, 1957)

Can we get simplicial cochains?

Barycentric coordinates (the standard simplex)

$$egin{aligned} ig(\lambda_1,\lambda_2,\lambda_3)\in\mathbb{R}^3_{\geq 0}\ &\mid\lambda_1+\lambda_2+\lambda_3=1 ig\} \end{aligned}$$

Whitney one-for<u>ms:</u>

$$egin{aligned} &\lambda_1\,d\lambda_2-\lambda_2\,d\lambda_1,\ &\lambda_2\,d\lambda_3-\lambda_3\,d\lambda_2,\ &\lambda_3\,d\lambda_1-\lambda_1\,d\lambda_3. \end{aligned}$$

Yakov Berchenko-Kogan

The Combinatorics of Finite Element Methods

Finite element exterior calculus The $\mathcal{P}_r \Lambda^k$ spaces

Definition (the $\mathcal{P}_r \Lambda^k$ spaces)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_r \Lambda^k(\mathcal{T})$ be the space of k-forms that
 - are piecewise polynomial of degree at most r, and
 - are tangentially continuous.

Example

$\mathcal{P}_r \Lambda^0(\mathcal{T})$	continuous
	piecewise polynomial scalar fields
$\mathcal{P}_r \Lambda^1(\mathcal{T})$	tangentially continuous
	piecewise polynomial vector fields
$\mathcal{P}_r \Lambda^{n-1}(\mathcal{T})$	normally continuous
	piecewise polynomial vector fields
$\mathcal{P}_r\Lambda^n(\mathcal{T})$	discontinuous
	piecewise polynomial scalar fields

We've seen

Finite element exterior calculus The $\mathcal{P}_r^- \Lambda^k$ spaces

On a single simplex T

- The Whitney k-forms have one DOF per k-dimensional face.
- Call their span $\mathcal{P}_1^- \Lambda^k(T)$.
 - Note: $\mathcal{P}_0 \Lambda^k(T) \subseteq \mathcal{P}_1^- \Lambda^k(T) \subseteq \mathcal{P}_1 \Lambda^k(T)$.
- Multiply Whitney forms by arbitrary scalar-valued polynomials of degree at most r 1. Call the span of these $\mathcal{P}_r^- \Lambda^k(\mathcal{T})$.

• So,
$$\mathcal{P}_{r-1}\Lambda^k(T) \subseteq \mathcal{P}_r^-\Lambda^k(T) \subseteq \mathcal{P}_r\Lambda^k(T)$$
.

Definition (the $\mathcal{P}_r^- \Lambda^k$ spaces on a triangulation)

- Let \mathcal{T} be a triangulation of a manifold of dimension n.
- Let $\mathcal{P}_r^- \Lambda^k(\mathcal{T})$ be the space of *k*-forms that
 - are in $\mathcal{P}_r^- \Lambda^k(T)$ for each element T of the triangulation, and
 - are tangentially continuous.

Duality between ${\mathcal P}$ and ${\mathcal P}^-$

We've also seen

More complexes

Theorem (Arnold, Falk, Winther, 2006)

For a triangulation \mathcal{T} , the cohomology of the complexes

$$\mathcal{P}_{r}\Lambda^{0}(\mathcal{T}) \stackrel{d}{\longrightarrow} \mathcal{P}_{r-1}\Lambda^{1}(\mathcal{T}) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \mathcal{P}_{r-n}\Lambda^{n}(\mathcal{T})$$

$$\mathcal{P}^-_r \Lambda^0(\mathcal{T}) \xrightarrow{d} \mathcal{P}^-_r \Lambda^1(\mathcal{T}) \xrightarrow{d} \cdots \xrightarrow{d} \mathcal{P}^-_r \Lambda^n(\mathcal{T})$$

agrees with de Rham cohomology (provided $r \ge n$ in the first line).

Remark

The second line with r = 1 is isomorphic to simplicial cochains.

Theorem (Arnold, Falk, Winther, 2006)

We can "mix and match" using any of the maps $\mathcal{P}_r \Lambda^k(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{k+1}(\mathcal{T}), \qquad \mathcal{P}_r \Lambda^k(\mathcal{T}) \xrightarrow{d} \mathcal{P}_r^- \Lambda^{k+1}(\mathcal{T})$ $\mathcal{P}_r^- \Lambda^k(\mathcal{T}) \xrightarrow{d} \mathcal{P}_r^- \Lambda^{k+1}(\mathcal{T}), \qquad \mathcal{P}_r^- \Lambda^k(\mathcal{T}) \xrightarrow{d} \mathcal{P}_{r-1} \Lambda^{k+1}(\mathcal{T})$ Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus, homological techniques, and applications.

Acta Numer., 15:1–155, 2006.

Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus: from Hodge theory to numerical stability.

Bull. Amer. Math. Soc. (N.S.), 47(2):281-354, 2010.

How do finite element spaces yield numerical methods?

Recall our sample problem

• Given $f: \Omega \to \mathbb{R}$, find $u: \Omega \to \mathbb{R}$ vanishing on $\partial \Omega$ such that

$$\Delta u = f$$
.

Equivalently,

$$\int_{\Omega} (\Delta u) v = \int_{\Omega} f v \qquad orall v ext{ vanishing on } \partial \Omega.$$

Intergating by parts,

$$-\int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v = \int_{\Omega} f v \quad \forall v \text{ vanishing on } \partial \Omega. \quad (1)$$

Galerkin method

- Given f, solve (1) for u, where u and v are restricted to be in the finite element space.
- Get a finite-dimensional linear system of equations.

Why do numerical analysts care about cohomology?

Eigenvalues of the curl curl operator

On a square domain, find a vector field u (with appropriate boundary conditions) such that curl curl $u = \lambda u$.

Bad things happen if we do not respect cohomology (AFW, 2010)

- Using vector fields with full continuity yields false eigenvalue λ = 6.
- In contrast, using the spaces we've discussed yields the correct spectrum.

How does cohomology play a role?

- dim(ker curl) = ∞ , so zero eigenspace hard to control.
- Can control if ker curl = im grad holds on the discrete level.

Why do numerical analysts care about cohomology?

Noether's Theorem, conservation laws, and discretization

- Noether's theorem: a system that is invariant under a transformation has a corresponding conservation law:
 - $\bullet\,$ translation invariance $\Rightarrow\,$ conservation of momentum
 - $\bullet\,$ rotation invariance \Rightarrow conservation of angular momentum
 - $\bullet\,$ time-translation invariance $\Rightarrow\,$ conservation of energy
- Discretizations that respect Noether's theorem will conserve these quantities exactly.
 - Otherwise, the quantities will be conserved only approximately and may drift over time.

Charge conservation in electromagnetism / Yang-Mills

- curl u invariant under $u \mapsto u + \operatorname{grad} f$
- \Rightarrow weighted average $\int \rho f$ conserved (ρ is charge).
 - continuous setting: all f allowed $\Rightarrow \rho$ conserved.
 - discrete setting: only f in finite element space (Nédélec, 1980).
- can conserve ρ even in discrete setting (—, Stern, 2021).

Further directions

Representation theory

Bases for scalar fields

• Recall barycentric coordinates:

$$\left\{ \left(\lambda_1,\lambda_2,\lambda_3
ight)\in\mathbb{R}^3_{\geq 0}\mid\lambda_1+\lambda_2+\lambda_3=1
ight\}.$$

• Quadratic scalar fields have monomial basis

$$\lambda_1^2, \quad \lambda_2^2, \quad \lambda_3^2, \quad \lambda_1\lambda_2, \quad \lambda_2\lambda_3, \quad \lambda_3\lambda_1.$$

Symmetry

- For scalar fields, the monomial basis is invariant under permuting λ₁, λ₂, λ₃.
- For vector fields, such an invariant basis may or may not exist, even up to sign.
 - In 2D and 3D, depends on the type of finite element space (e.g. $\mathcal{P}\Lambda^1$, $\mathcal{P}^-\Lambda^2$), and the polynomial degree modulo 3 (Licht, 2019; —, 2023).

Further directions

Riemannian geometry

So far we've discussed

- discretizing differential forms:
 - differential topology / smooth manifolds.

Riemannian geometry / Riemannian manifolds

- Must discretize the Riemannian metric:
 - Lowest order is just specifying the length of every edge of the triangulation (Regge, 1961).
 - Higher polynomial degree (Li, 2018).
- Must understand curvature:
 - Lowest order scalar curvature is just angle defect.
 - 2D: Gauss-Bonnett. General dimension: Regge, 1961.
 - Several papers towards full Riemann curvature tensor in general piecewise polynomial/smooth setting:
 - various combinations of —, Gawlik, Neunteufel, and others; 2019–2023 and in preparation.

Thank you