Duality in Finite Element Exterior Calculus

Yakov Berchenko-Kogan

Washington University in St. Louis

November 9-10, 2018

Finite element exterior calculus

Triangulate the domain into simplices. On a simplex T, we have spaces $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ of k-forms on T with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin
- vector fields
 - Brezzi–Douglas–Marini elements
 - Raviart–Thomas elements
 - Nédélec elements

Example

In three dimensions, $\mathcal{P}_r \Lambda^1(T)$ and $\mathcal{P}_r^- \Lambda^1(T)$ are Nédélec H(curl) elements of the 2nd and 1st kinds, respectively.

See (Arnold, Falk, Winther, 2006).

Duality: a motivating example

Let Ω be an 3-dimensional domain. Given $\alpha \in \Lambda^1(\Omega)$ and $\beta \in \Lambda^2(\Omega)$, we can compute

٠

$$\int_{\Omega} \alpha \wedge \beta.$$

Integration is a perfect pairing $\Lambda^1(\Omega) \times \Lambda^2(\Omega) \to \mathbb{R}$.

For any nonzero α ∈ Λ¹(Ω), there exists a β ∈ Λ²(Ω) such that ∫_Ω α ∧ β > 0, and vice versa.

In this setting, given α , it is easy to construct such a dual β . If $\alpha = \alpha_x dx + \alpha_y dy + \alpha_z dz$, then we can set

$$\beta = \alpha_x \, dy \wedge dz + \alpha_y \, dz \wedge dx + \alpha_z \, dx \wedge dy = *\alpha.$$

- $\int_{\Omega} \alpha \wedge \beta = \int_{\Omega} \left(\alpha_x^2 + \alpha_y^2 + \alpha_z^2 \right) \, d \text{vol} > 0.$
- β only depends on α pointwise.

Duality in finite element exterior calculus

Let T be a simplex. Given $\alpha \in \Lambda^k(T)$ and $\beta \in \Lambda^{n-k}(T)$, we consider the pairing

$$(\alpha,\beta)\mapsto\int_{\mathcal{T}}\alpha\wedge\beta.$$

Arnold, Falk, and Winther show that integration is a perfect pairing in the two settings

$$\mathcal{P}_r^- \Lambda^k(T) \times \mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T) \to \mathbb{R},$$

$$\mathcal{P}_r \Lambda^k(T) \times \mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T) \to \mathbb{R}.$$

• $\mathring{\mathcal{P}}$ denotes forms with vanishing tangential trace on ∂T .

Problem

Given $\alpha \in \mathcal{P}_r \Lambda^k(\mathcal{T})$, find a dual $\beta \in \mathring{\mathcal{P}}^-_{r+k+1} \Lambda^{n-k}(\mathcal{T})$ such that

- $\int_T \alpha \wedge \beta > 0$, and
- β only depends on α pointwise.

The simplex

To illustrate, focus on dim T = 2. The standard simplex T sits inside the first orthant **O** as those points that satisfy x + y + z = 1.

Key ideas

- ► Identify $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ with spaces $\mathbf{P}_r \Lambda^k(\mathbf{O})$ and $\mathbf{P}_r^- \Lambda^k(\mathbf{O})$ of differential forms on \mathbf{O} .
- Exploit a natural duality relationship between the P and P⁻ spaces.

Vertical and horizontal antisymmetric tensors

Let *E* be a vector space, let $H \subset E$ be a hyperplane, and let *X* be a vector not in the hyperplane. To illustrate, focus on dim E = 3.

- ▶ Choose a basis for $E^* = \langle e^1, e^2, e^3 \rangle$ so that $e^3(Y) = 0$ for all $Y \in H$ and $e^1(X) = e^2(X) = 0$.
- This splitting of E* extends to a splitting of Λ[•]E* into vertical and horizontal subspaces (Λ[•]E*)[⊥] and (Λ[•]E*)[⊤].

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 angle$. ,

Note that

 $\Lambda^k H^* \cong (\Lambda^{k+1} E^*)^{\perp}, \qquad \Lambda^k H^* \cong (\Lambda^k E^*)^{\top}.$

Vertical and horizontal differential forms

Let $\mathbf{x} = (x, y, z) \in T$. Apply the above discussion $E = \mathbb{R}^3 = T_{\mathbf{x}}\mathbf{O}$, $H = T_{\mathbf{x}}T$, $e^3 = dx + dy + dz$, and $X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$. $\uparrow T$

Definition

Let $\mathbf{P}_r \Lambda^k(\mathbf{O})$ denote those (k+1)-forms on \mathbf{O} that

- are vertical at every point $\mathbf{x} \in T$, and
- whose coefficients are homogeneous polynomials of degree r.
- Let $\mathbf{P}_r^- \Lambda^k(\mathbf{O})$ denote those k-forms on **O** that
 - are horizontal at every point $\mathbf{x} \in T$, and
 - ▶ whose coefficients are homogeneous polynomials of degree *r*.

Theorem

 $\mathcal{P}_r\Lambda^k(T)\cong \mathbf{P}_r\Lambda^k(\mathbf{O}),$

 $\mathcal{P}_r^- \Lambda^k(T) \cong \mathbf{P}_r^- \Lambda^k(\mathbf{O})$

Duality

Problem (reframed)

Given $\alpha \in \mathbf{P}_r \Lambda^k(\mathbf{O})$, find a dual $\beta \in \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$ such that

- $\int_{\mathbf{T}} \alpha \wedge \beta > 0$, and
- β only depends on α pointwise.

Theorem

We explicitly construct such a map $\mathbf{P}_r \Lambda^k(\mathbf{0}) \to \mathring{\mathbf{P}}^-_{r+k+1} \Lambda^{n-k}(\mathbf{0})$.

Example

- Let dim T = 2, and let $\alpha \in \mathbf{P}_r \Lambda^1(\mathbf{O})$, a vertical 2-form on \mathbf{O} .
- Write $\alpha = \alpha_x \, dy \wedge dz + \alpha_y \, dz \wedge dx + \alpha_z \, dx \wedge dy$.
- Set $\beta = \alpha_x yz \, dx + \alpha_y zx \, dy + \alpha_z xy \, dz$.
- Then β is horizontal, has vanishing tangential trace on the boundary, and has coefficients of degree r + 2.
- $\alpha \wedge \beta = (\alpha_x^2 yz + \alpha_y^2 zx + \alpha_z^2 xy) dvol, a positive multiple of dvol on the interior.$

Thank you

Vertical and horizontal antisymmetric tensors

Characterizations of α being vertical.

$$\blacktriangleright \ \alpha \wedge e^3 = 0.$$

- α is of the form $\gamma \wedge e^3$ for some γ .
- The restriction of α to H is zero.

Characterizations of β being horizontal.

- $i_X\beta = 0.$
- $\flat \ \beta = i_X \gamma \text{ for some } \gamma.$
- β is orthogonal to all vertical tensors.