Duality in Finite Element Exterior Calculus

Yakov Berchenko-Kogan

Washington University in St. Louis

November 9-10, 2018

Finite element exterior calculus

Triangulate the domain into simplices. On a simplex T, we have spaces $\mathcal{P}_{r} \Lambda^{k}(T)$ and $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$ of k-forms on T with polynomial coefficients of degree at most r.

Special cases

- scalar fields
- Lagrange
- Discontinuous Galerkin
- vector fields
- Brezzi-Douglas-Marini elements
- Raviart-Thomas elements
- Nédélec elements

Example

In three dimensions, $\mathcal{P}_{r} \Lambda^{1}(T)$ and $\mathcal{P}_{r}^{-} \Lambda^{1}(T)$ are Nédélec H (curl) elements of the 2 nd and 1 st kinds, respectively.

See (Arnold, Falk, Winther, 2006).

Duality: a motivating example

Let Ω be an 3-dimensional domain. Given $\alpha \in \Lambda^{1}(\Omega)$ and $\beta \in \Lambda^{2}(\Omega)$, we can compute

$$
\int_{\Omega} \alpha \wedge \beta
$$

Integration is a perfect pairing $\Lambda^{1}(\Omega) \times \Lambda^{2}(\Omega) \rightarrow \mathbb{R}$.

- For any nonzero $\alpha \in \Lambda^{1}(\Omega)$, there exists a $\beta \in \Lambda^{2}(\Omega)$ such that $\int_{\Omega} \alpha \wedge \beta>0$, and vice versa.
In this setting, given α, it is easy to construct such a dual β. If $\alpha=\alpha_{x} d x+\alpha_{y} d y+\alpha_{z} d z$, then we can set

$$
\beta=\alpha_{x} d y \wedge d z+\alpha_{y} d z \wedge d x+\alpha_{z} d x \wedge d y=* \alpha
$$

- $\int_{\Omega} \alpha \wedge \beta=\int_{\Omega}\left(\alpha_{x}^{2}+\alpha_{y}^{2}+\alpha_{z}^{2}\right) d \mathrm{vol}>0$.
- β only depends on α pointwise.

Duality in finite element exterior calculus

Let T be a simplex. Given $\alpha \in \Lambda^{k}(T)$ and $\beta \in \Lambda^{n-k}(T)$, we consider the pairing

$$
(\alpha, \beta) \mapsto \int_{T} \alpha \wedge \beta
$$

Arnold, Falk, and Winther show that integration is a perfect pairing in the two settings

$$
\begin{aligned}
\mathcal{P}_{r}^{-} \Lambda^{k}(T) \times \stackrel{\circ}{\mathcal{P}}_{r+k} \Lambda^{n-k}(T) & \rightarrow \mathbb{R}, \\
\mathcal{P}_{r} \Lambda^{k}(T) \times \stackrel{\mathcal{P}}{r+k+1}_{-} \Lambda^{n-k}(T) & \rightarrow \mathbb{R} .
\end{aligned}
$$

- $\stackrel{\mathcal{P}}{ }$ denotes forms with vanishing tangential trace on ∂T.

Problem

Given $\alpha \in \mathcal{P}_{r} \Lambda^{k}(T)$, find a dual $\beta \in{\mathcal{P}_{r+k+1}^{-}}^{-} \Lambda^{n-k}(T)$ such that

- $\int_{T} \alpha \wedge \beta>0$, and
- β only depends on α pointwise.

The simplex

To illustrate, focus on $\operatorname{dim} T=2$. The standard simplex T sits inside the first orthant \mathbf{O} as those points that satisfy $x+y+z=1$.

Key ideas

- Identify $\mathcal{P}_{r} \Lambda^{k}(T)$ and $\mathcal{P}_{r}^{-} \Lambda^{k}(T)$ with spaces $\mathbf{P}_{r} \Lambda^{k}(\mathbf{O})$ and $\mathbf{P}_{r}^{-} \wedge^{k}(\mathbf{O})$ of differential forms on \mathbf{O}.
- Exploit a natural duality relationship between the \mathbf{P} and \mathbf{P}^{-} spaces.

Vertical and horizontal antisymmetric tensors

Let E be a vector space, let $H \subset E$ be a hyperplane, and let X be a vector not in the hyperplane. To illustrate, focus on $\operatorname{dim} E=3$.

- Choose a basis for $E^{*}=\left\langle e^{1}, e^{2}, e^{3}\right\rangle$ so that $e^{3}(Y)=0$ for all $Y \in H$ and $e^{1}(X)=e^{2}(X)=0$.
- This splitting of E^{*} extends to a splitting of $\Lambda^{\bullet} E^{*}$ into vertical and horizontal subspaces $\left(\Lambda^{\bullet} E^{*}\right)^{\perp}$ and $\left(\Lambda^{\bullet} E^{*}\right)^{\top}$.

	vertical	horizontal
$\Lambda^{0} E^{*}$		$\langle 1\rangle$
$\Lambda^{1} E^{*}$	$\left\langle e^{3}\right\rangle$	$\left\langle e^{1}, e^{2}\right\rangle$
$\Lambda^{2} E^{*}$	$\left\langle e^{1} \wedge e^{3}, e^{2} \wedge e^{3}\right\rangle$	$\left\langle e^{1} \wedge e^{2}\right\rangle$
$\Lambda^{3} E^{*}$	$\left\langle e^{1} \wedge e^{2} \wedge e^{3}\right\rangle$	

Note that

$$
\Lambda^{k} H^{*} \cong\left(\Lambda^{k+1} E^{*}\right)^{\perp}, \quad \Lambda^{k} H^{*} \cong\left(\Lambda^{k} E^{*}\right)^{\top} .
$$

Vertical and horizontal differential forms

Let $\mathbf{x}=(x, y, z) \in T$. Apply the above discussion $E=\mathbb{R}^{3}=T_{\mathbf{x}} \mathbf{O}$, $H=T_{\mathbf{x}} T, e^{3}=d x+d y+d z$, and $X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}$.

$$
\underbrace{T}
$$

Definition

Let $\mathbf{P}_{r} \Lambda^{k}(\mathbf{O})$ denote those $(k+1)$-forms on \mathbf{O} that

- are vertical at every point $\mathbf{x} \in T$, and
- whose coefficients are homogeneous polynomials of degree r.

Let $\mathbf{P}_{r}^{-} \Lambda^{k}(\mathbf{O})$ denote those k-forms on \mathbf{O} that

- are horizontal at every point $\mathbf{x} \in T$, and
- whose coefficients are homogeneous polynomials of degree r.

Theorem

$$
\mathcal{P}_{r} \Lambda^{k}(T) \cong \mathbf{P}_{r} \Lambda^{k}(\mathbf{O}), \quad \mathcal{P}_{r}^{-} \Lambda^{k}(T) \cong \mathbf{P}_{r}^{-} \Lambda^{k}(\mathbf{O})
$$

Duality

Problem (reframed)

- $\int_{\mathbf{T}} \alpha \wedge \beta>0$, and
- β only depends on α pointwise.

Theorem
We explictly construct such a map $\mathbf{P}_{r} \Lambda^{k}(\mathbf{O}) \rightarrow \stackrel{\circ}{\mathbf{P}}_{r+k+1}^{-} \Lambda^{n-k}(\mathbf{O})$.

Example

- Let $\operatorname{dim} T=2$, and let $\alpha \in \mathbf{P}_{r} \Lambda^{1}(\mathbf{O})$, a vertical 2-form on \mathbf{O}.
- Write $\alpha=\alpha_{x} d y \wedge d z+\alpha_{y} d z \wedge d x+\alpha_{z} d x \wedge d y$.
- Set $\beta=\alpha_{x} y z d x+\alpha_{y} z x d y+\alpha_{z} x y d z$.
- Then β is horizontal, has vanishing tangential trace on the boundary, and has coefficients of degree $r+2$.
- $\alpha \wedge \beta=\left(\alpha_{x}^{2} y z+\alpha_{y}^{2} z x+\alpha_{z}^{2} x y\right) d$ vol, a positive multiple of $d \mathbf{v o l}$ on the interior.

Thank you

Vertical and horizontal antisymmetric tensors

	vertical	horizontal
$\Lambda^{0} E^{*}$	$\langle 1\rangle$	
$\Lambda^{1} E^{*}$	$\left\langle e^{3}\right\rangle$	$\left\langle e^{1}, e^{2}\right\rangle$
$\Lambda^{2} E^{*}$	$\left\langle e^{1} \wedge e^{3}, e^{2} \wedge e^{3}\right\rangle$	$\left\langle e^{1} \wedge e^{2}\right\rangle$
$\Lambda^{3} E^{*}$	$\left\langle e^{1} \wedge e^{2} \wedge e^{3}\right\rangle$	

Characterizations of α being vertical.

- $\alpha \wedge e^{3}=0$.
- α is of the form $\gamma \wedge e^{3}$ for some γ.
- The restriction of α to H is zero.

Characterizations of β being horizontal.

- $i_{X} \beta=0$.
- $\beta=i_{X} \gamma$ for some γ.
- β is orthogonal to all vertical tensors.

