Duality in Finite Element Exterior Calculus and the Hodge Star Operator on the Sphere

Yakov Berchenko-Kogan

Washington University in St. Louis

March 24, 2019

Yakov Berchenko-Kogan Duality in FEEC and the Hodge Star on the Sphere

The finite element method

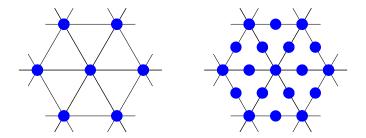
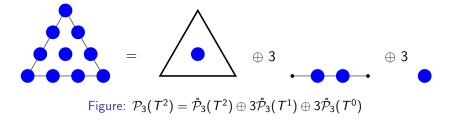


Figure: Degrees of freedom (blue) of piecewise linear functions (left) and piecewise quadratic functions (right).

Geometric decomposition



 $(\mathcal{P}_{3}(T^{2}))^{*} \cong (\mathring{\mathcal{P}}_{3}(T^{2}))^{*} \oplus 3(\mathring{\mathcal{P}}_{3}(T^{1}))^{*} \oplus 3(\mathring{\mathcal{P}}_{3}(T^{0}))^{*}$ $\cong \mathcal{P}_{0}(T^{2}) \oplus 3\mathcal{P}_{1}(T^{1}) \oplus 3\mathcal{P}_{2}(T^{0})$

Duality

Definition

Let *P* and *Q* be spaces of functions *Tⁿ* → ℝ.
e.g. *P* = *P*₁(*T*¹), *Q* = *P*₃(*T*¹))

- e.g. $\mathcal{P} = \mathcal{P}_1(I^{-1}), \ \mathcal{Q} = \mathcal{P}_3(I^{-1})$
- Consider the pairing

$$(p,q)\mapsto \int_{T^n}pq.$$

- *P* and *Q* are dual to each other with respect to integration if this pairing is a perfect pairing *P* × *Q* → ℝ.
 - For each nonzero p ∈ P there exists a q ∈ Q such that ∫_{Tⁿ} pq > 0, and for each nonzero q there exists such a p.

Problem

Construct a bijection $\mathcal{P} \to \mathcal{Q}$ so that for nonzero $p \mapsto q$ we have

- q only depends on p pointwise, and
- $\int_{\mathcal{T}^n} pq > 0.$

Explicit pointwise duality

Figure: Barycentric coordinates

Example (Duality between $\mathcal{P}_1(T^1)$ and $\mathring{\mathcal{P}}_3(T^1)$)

For $p \in \mathcal{P}_1(T^1)$, set q = (xy)p. Likewise, given q, set $p = \frac{q}{xy}$.

$$\begin{array}{c|c} \mathcal{P}_{1}(T^{1}) & \mathcal{P}_{3}(T^{1}) & \int_{T^{1}} pq \\ \hline x & x^{2}y & \int_{T^{1}} (xy)x^{2} \\ y & xy^{2} & \int_{T^{1}} (xy)y^{2} \end{array}$$

Yakov Berchenko-Kogan Duality in FEEC and the Hodge Star on the Sphere

Finite element exterior calculus

Spaces $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_r^- \Lambda^k(T^n)$ of *k*-forms on T^n with polynomial coefficients of degree at most *r*.

- Special cases
 - scalar fields
 - Lagrange
 - Discontinuous Galerkin
 - vector fields
 - Brezzi-Douglas-Marini elements
 - Raviart-Thomas elements
 - Nédélec elements

Example

 $\mathcal{P}_r \Lambda^1(T^3)$ and $\mathcal{P}_r^- \Lambda^1(T^3)$ are Nédélec $H(\operatorname{curl})$ elements of the 2nd and 1st kinds, respectively.

• See Arnold, Falk, Winther, 2006.

Duality in finite element exterior calculus

Theorem (Arnold, Falk, and Winther)

With respect to the integration pairing

$$(a,b)\mapsto \int_{T^n}a\wedge b$$

•
$$\mathcal{P}_r \Lambda^k(T^n)$$
 is dual to $\mathring{\mathcal{P}}^-_{r+k+1} \Lambda^{n-k}(T^n)$,
• $\mathcal{P}^-_r \Lambda^k(T^n)$ is dual to $\mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T^n)$.

Problem

Construct an explicit bijection between these spaces so that for nonzero $a \mapsto b$ we have

• b only depends on a pointwise, and

•
$$\int_{T^n} a \wedge b > 0.$$

A motivating example

Let Ω be an 3-dimensional domain.

Λ¹(Ω) and Λ²(Ω) are dual to each other with respect to integration.

Explicit pointwise duality

• Given nonzero
$$a \in \Lambda^1(\Omega)$$
, let

$$a=a_x\,dx+a_y\,dy+a_z\,dz.$$

• Define
$$b \in \Lambda^2(\Omega)$$
 by

$$b = a_x \, dy \wedge dz + a_y \, dz \wedge dx + a_z \, dx \wedge dy =: *a.$$

• *b* only depends on *a* pointwise.

•
$$\int_{\Omega} a \wedge b = \int_{\Omega} (a_x^2 + a_y^2 + a_z^2) d\operatorname{vol} = \int_{\Omega} \|a\|^2 d\operatorname{vol} > 0,$$

The simplex and the sphere

T² consists of points in the first orthant with x + y + z = 1.
Via the change of coordinates

$$x = u^2, \qquad \qquad y = v^2, \qquad \qquad z = w^2,$$

we obtain the unit sphere $u^2 + v^2 + w^2 = 1$.

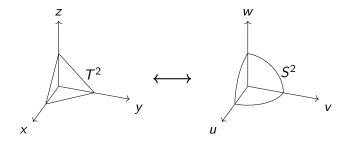


Figure: Change of coordinates

Explicit pointwise duality for finite element exterior calculus

Constructing the dual

- **1** Start with $a \in \Lambda^k(T^n)$.
- Solution Change coordinates to obtain $\alpha \in \Lambda^k(S^n)$.
- Apply the Hodge star to obtain $*_{S^n} \alpha \in \Lambda^{n-k}(S^n)$.
- Multiply by the coordinate functions to obtain β ∈ Λ^{n-k}(Sⁿ).
 in dimension 2, β = uvw(*_{S2}α).
- Solution Change coordinates back to obtain $b \in \Lambda^{n-k}(T^n)$.

Theorem (YBK)

- b depends on a pointwise.
- $\int_{\mathcal{T}^n} a \wedge b > 0$ for nonzero a.
- $a \in \mathcal{P}_r \Lambda^k(T^n)$ iff $b \in \mathring{\mathcal{P}}^-_{r+k+1} \Lambda^{n-k}(T^n)$.
- $a \in \mathcal{P}_r^- \Lambda^k(T^n)$ iff $b \in \mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T^n)$.

Example 1

Change of coordinates

$$\begin{aligned} x &= u^2, & y &= v^2, & z &= w^2, \\ dx &= 2u \, du, & dy &= 2v \, dv, & dz &= 2w \, dw. \end{aligned}$$

Hodge star on the sphere

$$\nu = u \, du + v \, dv + w \, dw,$$

*5²\alpha = *_{R³}(\nu \lambda \alpha).

Example

a = y dy
$$\in \mathcal{P}_1 \Lambda^1(T^2)$$
.
a = 2v³ dv.
s₂ = 2uv³ dw - 2v³w du.
 $\beta = uvw(*s^n \alpha) = 2u^2v^4w dw - 2uv^4w^2 du.$
b = xy² dz - y²z dx $\in \mathring{\mathcal{P}}_3^- \Lambda^1(T^2)$.

Example 2

Example

a = x dy - y dx
$$\in \mathcal{P}_1^- \Lambda^1(T^2)$$
.
a = 2u²v dv - 2uv² du.
• $*_{5^2\alpha} = 2((u^3v + uv^3)dw - u^2vw du - uv^2w dv)$
= 2uv(u² + v² + w²) dw - uvw d(u² + v² + w²)
= 2uv dw.
• $\beta = uvw(*_{5^2\alpha}) = 2u^2v^2w dw.$
• $b = xy dz \in \mathring{\mathcal{P}}_2\Lambda^1(T^2).$

Integration via *u*-substitution

$$\int_{T^2} a \wedge b = \int_{S^2_{>0}} \alpha \wedge \beta = \int_{S^2_{>0}} uvw(\alpha \wedge *_{S^2}\alpha)$$
$$= \int_{S^2_{>0}} uvw \|\alpha\|^2 \ d\text{Area} > 0$$

Correspondence between forms on T^n and forms on S^n

Change of coordinates

$$\begin{aligned} x &= u^2, & y &= v^2, & z &= w^2, \\ dx &= 2u \, du, & dy &= 2v \, dv, & dz &= 2w \, dw. \end{aligned}$$

Definition

 $\alpha \in \Lambda^k(S^n)$ is even if it is invariant under each coordinate reflection. Let $\Lambda^k_e(S^n)$ denote the space of such forms.

Example

$$u^2 + v^4 w^2$$
 $u \, du$ $uvw^2 \, du \wedge dv$

Theorem (YBK)

The change of coordinates induces a bijection between $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathcal{P}_{2r+k} \Lambda^k_e(S^n)$.

Even and odd forms on the sphere

Definition

 $\alpha \in \Lambda^k(S^n)$ is odd if it changes sign under each coordinate reflection. Let $\Lambda_o^k(S^n)$ denote the space of such forms.

Definition

Let u_N denote the product of the coordinate functions.

• In dimension 2, $u_N = uvw$.

Proposition

- If α is even, then $*_{S^n} \alpha$ is odd, and vice versa.
- If α is even, then $u_N \alpha$ is odd, and vice versa.

Proof.

- Reflections reverse orientation, which changes the sign of $*_{S^n}$.
- u_N is odd.

Correspondences between forms on T^n and forms on S^n

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \ge 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Explicit pointwise duality for $\mathcal{P}_r \Lambda^k(T^n)$ and $\mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T^n)$

- $a \in \mathcal{P}_r \Lambda^k(T^n)$,
- $a \in \mathcal{P}_{2r+k} \Lambda_e^k(S^n),$
- $\ \, \bullet s_{n}\alpha \in \ast_{S^n}\mathcal{P}_{2r+k}\Lambda^k_e(S^n),$

$$b \in \mathring{\mathcal{P}}^{-}_{r+k+1} \Lambda^{n-k}(T^n).$$

Correspondences between forms on T^n and forms on S^n

Theorem (YBK)

Let $a \in \mathcal{P}_r \Lambda^k(T^n)$ and $\alpha \in \mathcal{P}_{2r+k} \Lambda^k_e(S^n)$ correspond to each other via the change of coordinates. Then for $r \ge 1$,

$$\begin{aligned} & a \in \mathcal{P}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n) \\ & a \in \mathring{\mathcal{P}}_r \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N \mathcal{P}_{2r+k-n-1} \Lambda_o^k(S^n) \\ & a \in \mathring{\mathcal{P}}_r^- \Lambda^k(T^n) & \Leftrightarrow & \alpha \in u_N *_{S^n} \mathcal{P}_{2r+k-n-2} \Lambda_e^{n-k}(S^n). \end{aligned}$$

Explicit pointwise duality for $\mathcal{P}_r^- \Lambda^k(T^n)$ and $\mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T^n)$

1
$$a \in \mathcal{P}_r^- \Lambda^k(T^n),$$

2 $\alpha \in *_{S^n} \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n),$
3 $*_{S^n} \alpha \in \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n),$
4 $\beta = u_N *_{S^n} \alpha \in u_N \mathcal{P}_{2r+k-1} \Lambda_o^{n-k}(S^n),$
5 $b \in \mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T^n).$

(optional slide) Alternate characterizations of $\mathcal{P}_r^- \Lambda^k(T^n)$

Definition

• Let X be the radial vector field

$$X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}.$$

• Let X_T be the projection of the radial vector field to T^n .

$$X_{T} = \left(x - \frac{1}{3}\right) \frac{\partial}{\partial x} + \left(y - \frac{1}{3}\right) \frac{\partial}{\partial y} + \left(z - \frac{1}{3}\right) \frac{\partial}{\partial z}.$$

• Let $i_X \colon \Lambda^k(T^2) \to \Lambda^{k-1}(T^2)$ denote contraction.

Definition (Arnold, Falk, and Winther)

$$\mathcal{P}_r^- \Lambda^k(T^n) := \mathcal{P}_{r-1} \Lambda^k(T^n) + i_{X_T} \mathcal{P}_{r-1} \Lambda^{k+1}(T^n).$$

 $\mathcal{P}_r \Lambda^k(T^n)$ is the restriction of $\mathcal{P}_r \Lambda^k(\mathbb{R}^{n+1})$ to T^n . Likewise...

Definition (YBK)

$$\mathcal{P}_r^- \Lambda^k(\mathbb{R}^{n+1}) := i_X \mathcal{P}_{r-1} \Lambda^{k+1}(\mathbb{R}^{n+1})$$

Let $\mathcal{P}_r^- \Lambda^k(T^n)$ be the restriction of $\mathcal{P}_r^- \Lambda^k(\mathbb{R}^{n+1})$ to T^n .

Theorem (YBK)

The two definitions are equivalent.

Thank you