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Introduction to Mean Curvature Flow Self-Shrinkers

Curve shortening flow

d

dt
x = −κ(x)n.

Figure: Curve shortening flow. Image credit: Treibergs, 2010 slides. Video credit:
Angenent, 2011 YouTube.
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Introduction to Mean Curvature Flow Self-Shrinkers

Mean curvature flow

d

dt
x = −H(x)n

Figure: Mean curvature flow. Video credit: Kovács, Li, Lubich, 2019.
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Introduction to Mean Curvature Flow Self-Shrinkers

Mean curvature flow singularities

Categorize singularities by zooming in at the singular point just before
the singular time.

round sphere
round cylinder
others?

Such a limiting surface must be a self-shrinker.

A self-shrinker is a surface that evolves under mean curvature flow by
dilations.

Are there other self-shrinkers?

Yes, a torus (Angenent, 1989).
Many others (see papers by Drugan, Kapouleas, Kleene, Lee, McGrath,
Møller, Nguyen, etc.).
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Introduction to Mean Curvature Flow Self-Shrinkers

The Angenent torus
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Figure: The Angenent torus (left) and its cross-section (right), with the
self-shrinking sphere (green) and cylinder (orange) for comparison.
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Introduction to Mean Curvature Flow Self-Shrinkers

Angenent torus intuition

Figure: Meridian collapse (left), inner longitude collapse (right), just right
(middle).
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Entropy

Section 2

Entropy
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Entropy

A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface Σ ⊂ Rn+1 is a self-shrinker that becomes extinct at the
origin after one unit of time if and only if it is a critical point of the
weighted area functional called the F -functional.

F (Σ) = (4π)−n/2

∫
Σ
e−|x |

2/4 dArea.

i.e. for any family of surfaces Σs parametrized by s with Σ0 = Σ, we have

d

ds

∣∣∣∣
s=0

F (Σs) = 0.
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Entropy

Entropy of self-shrinkers

The critical value of the F -functional, called the entropy of the
self-shrinker, is helpful in understanding what kinds of singularities can
occur.

plane1

two planes2

sphere4
e

cylinder

√
2π
e

Angenent torus (Y. B.-K. 2019)1.85

Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and Nguyen, 2018): the entropy of the Angenent
torus is less than 2.
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Entropy

Significance of Entropy

Classifying self-shrinkers, asked by Colding, Minicozzi, Pedersen,
2015.

Likely hopeless at high entropy; see work of Drugan, Kapouleas,
Kleene, Lee, McGrath, Møller, Nguyen, etc.
Perhaps possible at low entropy (below 2?); see Mramor, 2020.

Continuing mean curvature flow past a singularity; see work of
Mramor and Wang, 2018.
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Entropy

Numerical estimates of the entropy of the Angenent torus
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Figure: The entropy of the Angenent torus as computed using 128, 256, 512,
1024, and 2048 points. The values (orange) appear to lie on an exponential curve
(blue) converging to 1.8512167 (green).

The convergence rate suggests that the computed value is within
2× 10−6 of the true value.
Later work (Barrett, Deckelnick, Nürnberg, 2020) obtained the same
value using different methods.
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Stability and Index

Stability and Index

Stability

If we perturb a circle (even a lot), and then apply curve shortening
flow, the curve will return to a circular shape as it shrinks.

If we perturb a round sphere a little, and then apply mean curvature
flow, it will also return to being round as it shrinks.

The Angenent torus might not.

e.g. perturbations could cause the meridian to collapse too soon.

How unstable is it? Is it stable for k-parameter families?

Index

Unstable perturbations will decrease the F -functional.

The number of independent perturbations of a critical point that
decrease the value of a functional is called the (Morse) index of the
critical point.
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Stability and Index

Toy example illustrating stability

Figure: Two cities can be connected with a stable geodesic and with an unstable
geodesic.
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Stability and Index

Toy example illustrating index

Figure: Stable and unstable variations of the equator.
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Stability and Index

The index of the Angenent torus

General idea

Once we discretize, the F -functional is a functional on a (large)
finite-dimensional space of discrete surfaces.

At a critical point (∇F = 0), we compute the Hessian matrix ∇2F .

The index is the number of negative eigenvalues of this matrix.

Previously known unstable variations

Dilation (eigenvalue −1) and three translations (eigenvalue −1
2 ).

At least three other variations exist (Liu, 2016).
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Stability and Index

Exploiting rotational symmetry

Rotational symmetry

In cylindrical coordinates (r , θ, z), the torus is determined by its
cross-section Γ in the (r , z)-plane.

A rotationally symmetric variation of the torus can be described by a
variation u of Γ.

e.g. dilation, vertical translation

More general variations can be written as linear combinations of
u cos kθ and u sin kθ.

e.g. horizontal translation, k = 1.

Liu’s work shows there must exist an additional variation with k = 0
and a pair of variations with k = 1.

Fourier decomposition

Look at each Fourier component (k value) individually.

This lets us compute variations of the cross-section (1D) rather than
variations of the surface (2D).
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Index results (Y. B.-K. 2020)

16 YAKOV BERCHENKO-KOGAN

k = 0 k = 1 k = 2

λ0 ≈ −3.740 λ0 = −1 λ0 ≈ −0.488

λ1 = −1 λ0 = −1 λ0 ≈ −0.488

λ2 = −1
2 λ1 = −1

2

λ1 = −1
2

Figure 5. The Angenent torus (top row) and its variations
with negative eigenvalues. In the first column, we have dila-
tion with eigenvalue −1 and vertical translation with eigen-
value −1

2 . In the second column, we have the pair of varia-
tions with eigenvalue −1 discussed in [6, Section 6], and the
two horizontal translations with eigenvalue −1

2 .
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More index results

Proof that the eigenvalue that seems to be −1 is actually −1.
(Y. B.-K. 2021).

Using the same techniques, index bounds, including upper bounds, on
the index of rotationally symmetric tori. (Y. B.-K. 2021).

Other work giving lower bounds: see (McGonagle, 2015; Liu, 2016;
Aiex, 2019).
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Future directions

Compute the entropy and index of more self-shrinkers.

A starting point for leaving the rotationally symmetric setting: Take
the union of two rotationally symmetric self-shrinkers, and desingularize
as in (Nguyen, 2009–2014; Kapouleas, Kleene, Møller, 2018).
Also, recent work on self-shrinkers with bi-rotational symmetry
(McGrath, 2015; Drugan, Lee, Nguyen, 2018).

Use elastic flow to compute self-shrinkers more effectively.

Unstable critical points of the F -functional become stable if we use an
appropriate elastic energy instead. See Garcke and Nürnberg, 2020.

Prove bounds on the accuracy of the entropy values and the
eigenvalues.

Starting point: numerical analysis theorems about convergence rates of
approximations to minimal surfaces. See Dziuk and Hutchinson, 1999;
Dierkes, Jenschke, Pozzi, 2018.
We have a weight (the F -functional) and we need not just convergence
rates but actual bounds, but the same techniques apply
(fundamentally, Taylor’s theorem).
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