Numerically Computing the Entropy and Index of Mean Curvature Flow Self-Shrinkers

Yakov Berchenko-Kogan

Penn State

1 Introduction to Mean Curvature Flow Self-Shrinkers

.∋...>

Section 1

Introduction to Mean Curvature Flow Self-Shrinkers

æ

A B M A B M

Image: Image:

Curve shortening flow

$$\frac{d}{dt}\mathbf{x} = -\kappa(\mathbf{x})\mathbf{n}.$$

Figure: Curve shortening flow. Image credit: Treibergs, 2010 slides. Video credit: Angenent, 2011 YouTube.

- 3 ▶

Introduction to Mean Curvature Flow Self-Shrinkers

Mean curvature flow

$$\frac{d}{dt}\mathbf{x} = -H(\mathbf{x})\mathbf{n}$$

Figure: Mean curvature flow. Video credit: Kovács, Li, Lubich, 2019.

• Categorize singularities by zooming in at the singular point just before the singular time.

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?
- Such a limiting surface must be a self-shrinker.

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?
- Such a limiting surface must be a self-shrinker.
 - A self-shrinker is a surface that evolves under mean curvature flow by dilations.

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?
- Such a limiting surface must be a self-shrinker.
 - A self-shrinker is a surface that evolves under mean curvature flow by dilations.
- Are there other self-shrinkers?

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?
- Such a limiting surface must be a self-shrinker.
 - A self-shrinker is a surface that evolves under mean curvature flow by dilations.
- Are there other self-shrinkers?
 - Yes, a torus (Angenent, 1989).

- Categorize singularities by zooming in at the singular point just before the singular time.
 - round sphere
 - round cylinder
 - others?
- Such a limiting surface must be a self-shrinker.
 - A self-shrinker is a surface that evolves under mean curvature flow by dilations.
- Are there other self-shrinkers?
 - Yes, a torus (Angenent, 1989).
 - Many others (see papers by Drugan, Kapouleas, Kleene, Lee, McGrath, Møller, Nguyen, etc.).

The Angenent torus

Figure: The Angenent torus (left) and its cross-section (right), with the self-shrinking sphere (green) and cylinder (orange) for comparison.

Introduction to Mean Curvature Flow Self-Shrinkers

Angenent torus intuition

Figure: Meridian collapse (left), inner longitude collapse (right), just right (middle).

Section 2

Entropy

3

イロト イヨト イヨト イヨト

A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface $\Sigma \subset \mathbb{R}^{n+1}$ is a self-shrinker that becomes extinct at the origin after one unit of time if and only if it is a critical point of the weighted area functional called the *F*-functional.

$$F(\Sigma) = (4\pi)^{-n/2} \int_{\Sigma} e^{-|\mathbf{x}|^2/4} \, dArea.$$

A variational formulation for self-shrinkers

Theorem (Huisken, 1990)

A hypersurface $\Sigma \subset \mathbb{R}^{n+1}$ is a self-shrinker that becomes extinct at the origin after one unit of time if and only if it is a critical point of the weighted area functional called the *F*-functional.

$$F(\Sigma) = (4\pi)^{-n/2} \int_{\Sigma} e^{-|\mathbf{x}|^2/4} \, dA$$
rea.

i.e. for any family of surfaces Σ_s parametrized by s with $\Sigma_0 = \Sigma$, we have

$$\left.\frac{d}{ds}\right|_{s=0}F(\Sigma_s)=0.$$

Entropy of self-shrinkers

The critical value of the *F*-functional, called the entropy of the self-shrinker, is helpful in understanding what kinds of singularities can occur.

Figure: Entropies of self-shrinking surfaces

イロト イヨト イヨト ・

Entropy of self-shrinkers

The critical value of the *F*-functional, called the entropy of the self-shrinker, is helpful in understanding what kinds of singularities can occur.

Figure: Entropies of self-shrinking surfaces

イロト イヨト イヨト ・

Entropy of self-shrinkers

The critical value of the *F*-functional, called the entropy of the self-shrinker, is helpful in understanding what kinds of singularities can occur.

Figure: Entropies of self-shrinking surfaces

Earlier work (Drugan and Nguyen, 2018): the entropy of the Angenent torus is less than 2.

Y. Berchenko-Kogan (Penn State)

• Classifying self-shrinkers, asked by Colding, Minicozzi, Pedersen, 2015.

3 1 4 3 1

- Classifying self-shrinkers, asked by Colding, Minicozzi, Pedersen, 2015.
 - Likely hopeless at high entropy; see work of Drugan, Kapouleas, Kleene, Lee, McGrath, Møller, Nguyen, etc.

- Classifying self-shrinkers, asked by Colding, Minicozzi, Pedersen, 2015.
 - Likely hopeless at high entropy; see work of Drugan, Kapouleas, Kleene, Lee, McGrath, Møller, Nguyen, etc.
 - Perhaps possible at low entropy (below 2?); see Mramor, 2020.

- Classifying self-shrinkers, asked by Colding, Minicozzi, Pedersen, 2015.
 - Likely hopeless at high entropy; see work of Drugan, Kapouleas, Kleene, Lee, McGrath, Møller, Nguyen, etc.
 - Perhaps possible at low entropy (below 2?); see Mramor, 2020.
- Continuing mean curvature flow past a singularity; see work of Mramor and Wang, 2018.

Entropy

Numerical estimates of the entropy of the Angenent torus

Figure: The entropy of the Angenent torus as computed using 128, 256, 512, 1024, and 2048 points. The values (orange) appear to lie on an exponential curve (blue) converging to 1.8512167 (green).

Entropy

Numerical estimates of the entropy of the Angenent torus

Figure: The entropy of the Angenent torus as computed using 128, 256, 512, 1024, and 2048 points. The values (orange) appear to lie on an exponential curve (blue) converging to 1.8512167 (green).

• The convergence rate suggests that the computed value is within 2×10^{-6} of the true value.

Entropy

Numerical estimates of the entropy of the Angenent torus

Figure: The entropy of the Angenent torus as computed using 128, 256, 512, 1024, and 2048 points. The values (orange) appear to lie on an exponential curve (blue) converging to 1.8512167 (green).

- $\bullet\,$ The convergence rate suggests that the computed value is within 2×10^{-6} of the true value.
- Later work (Barrett, Deckelnick, Nürnberg, 2020) obtained the same value using different methods.

Y. Berchenko-Kogan (Penn State)

Section 3

Stability and Index

æ

<ロト <問ト < 目と < 目と

Stability

æ

<ロト <問ト < 目と < 目と

Stability

• If we perturb a circle (even a lot), and then apply curve shortening flow, the curve will return to a circular shape as it shrinks.

3 1 4 3 1

- If we perturb a circle (even a lot), and then apply curve shortening flow, the curve will return to a circular shape as it shrinks.
- If we perturb a round sphere a little, and then apply mean curvature flow, it will also return to being round as it shrinks.

- If we perturb a circle (even a lot), and then apply curve shortening flow, the curve will return to a circular shape as it shrinks.
- If we perturb a round sphere a little, and then apply mean curvature flow, it will also return to being round as it shrinks.
- The Angenent torus might not.

- If we perturb a circle (even a lot), and then apply curve shortening flow, the curve will return to a circular shape as it shrinks.
- If we perturb a round sphere a little, and then apply mean curvature flow, it will also return to being round as it shrinks.
- The Angenent torus might not.
 - e.g. perturbations could cause the meridian to collapse too soon.

- If we perturb a circle (even a lot), and then apply curve shortening flow, the curve will return to a circular shape as it shrinks.
- If we perturb a round sphere a little, and then apply mean curvature flow, it will also return to being round as it shrinks.
- The Angenent torus might not.
 - e.g. perturbations could cause the meridian to collapse too soon.
- How unstable is it? Is it stable for k-parameter families?
Stability

- If we perturb a circle (even a lot), and then apply curve shortening flow, the curve will return to a circular shape as it shrinks.
- If we perturb a round sphere a little, and then apply mean curvature flow, it will also return to being round as it shrinks.
- The Angenent torus might not.
 - e.g. perturbations could cause the meridian to collapse too soon.
- How unstable is it? Is it stable for k-parameter families?

Index

Stability

- If we perturb a circle (even a lot), and then apply curve shortening flow, the curve will return to a circular shape as it shrinks.
- If we perturb a round sphere a little, and then apply mean curvature flow, it will also return to being round as it shrinks.
- The Angenent torus might not.
 - e.g. perturbations could cause the meridian to collapse too soon.
- How unstable is it? Is it stable for k-parameter families?

Index

• Unstable perturbations will decrease the *F*-functional.

Stability

- If we perturb a circle (even a lot), and then apply curve shortening flow, the curve will return to a circular shape as it shrinks.
- If we perturb a round sphere a little, and then apply mean curvature flow, it will also return to being round as it shrinks.
- The Angenent torus might not.
 - e.g. perturbations could cause the meridian to collapse too soon.
- How unstable is it? Is it stable for k-parameter families?

Index

- Unstable perturbations will decrease the *F*-functional.
- The number of independent perturbations of a critical point that decrease the value of a functional is called the (Morse) index of the critical point.

Toy example illustrating stability

Figure: Two cities can be connected with a stable geodesic and with an unstable geodesic.

Toy example illustrating stability

Figure: Two cities can be connected with a stable geodesic and with an unstable geodesic.

Y. Berchenko-Kogan (Penn State)

Toy example illustrating stability

Figure: Two cities can be connected with a stable geodesic and with an unstable geodesic.

Toy example illustrating index

Toy example illustrating index

Figure: Stable and unstable variations of the equator.

-∢ ∃ ▶

Toy example illustrating index

The index of the Angenent torus

General idea

æ

(日) (四) (日) (日) (日)

General idea

• Once we discretize, the *F*-functional is a functional on a (large) finite-dimensional space of discrete surfaces.

▶ ∢ ∃ ▶

General idea

- Once we discretize, the *F*-functional is a functional on a (large) finite-dimensional space of discrete surfaces.
- At a critical point ($\nabla F = 0$), we compute the Hessian matrix $\nabla^2 F$.

General idea

- Once we discretize, the *F*-functional is a functional on a (large) finite-dimensional space of discrete surfaces.
- At a critical point ($\nabla F = 0$), we compute the Hessian matrix $\nabla^2 F$.
- The index is the number of negative eigenvalues of this matrix.

General idea

- Once we discretize, the *F*-functional is a functional on a (large) finite-dimensional space of discrete surfaces.
- At a critical point ($\nabla F = 0$), we compute the Hessian matrix $\nabla^2 F$.
- The index is the number of negative eigenvalues of this matrix.

Previously known unstable variations

General idea

- Once we discretize, the *F*-functional is a functional on a (large) finite-dimensional space of discrete surfaces.
- At a critical point ($\nabla F = 0$), we compute the Hessian matrix $\nabla^2 F$.
- The index is the number of negative eigenvalues of this matrix.

Previously known unstable variations

• Dilation (eigenvalue -1) and three translations (eigenvalue $-\frac{1}{2}$).

(日)

General idea

- Once we discretize, the *F*-functional is a functional on a (large) finite-dimensional space of discrete surfaces.
- At a critical point ($\nabla F = 0$), we compute the Hessian matrix $\nabla^2 F$.
- The index is the number of negative eigenvalues of this matrix.

Previously known unstable variations

- Dilation (eigenvalue -1) and three translations (eigenvalue $-\frac{1}{2}$).
- At least three other variations exist (Liu, 2016).

(日)

Exploiting rotational symmetry

Rotational symmetry

æ

(日) (四) (日) (日) (日)

Rotational symmetry

In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.

-∢ ∃ ▶

- In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.
- A rotationally symmetric variation of the torus can be described by a variation u of Γ .

- In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.
- A rotationally symmetric variation of the torus can be described by a variation u of Γ .
 - e.g. dilation, vertical translation

- In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.
- A rotationally symmetric variation of the torus can be described by a variation u of Γ .
 - e.g. dilation, vertical translation
- More general variations can be written as linear combinations of $u \cos k\theta$ and $u \sin k\theta$.

- In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.
- A rotationally symmetric variation of the torus can be described by a variation u of Γ .
 - e.g. dilation, vertical translation
- More general variations can be written as linear combinations of $u \cos k\theta$ and $u \sin k\theta$.
 - e.g. horizontal translation, k = 1.

- In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.
- A rotationally symmetric variation of the torus can be described by a variation u of Γ .
 - e.g. dilation, vertical translation
- More general variations can be written as linear combinations of $u \cos k\theta$ and $u \sin k\theta$.
 - e.g. horizontal translation, k = 1.
- Liu's work shows there must exist an additional variation with k = 0 and a pair of variations with k = 1.

Rotational symmetry

- In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.
- A rotationally symmetric variation of the torus can be described by a variation u of Γ .
 - e.g. dilation, vertical translation
- More general variations can be written as linear combinations of *u* cos kθ and *u* sin kθ.
 - e.g. horizontal translation, k = 1.
- Liu's work shows there must exist an additional variation with k = 0 and a pair of variations with k = 1.

Fourier decomposition

Rotational symmetry

- In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.
- A rotationally symmetric variation of the torus can be described by a variation u of Γ .
 - e.g. dilation, vertical translation
- More general variations can be written as linear combinations of $u \cos k\theta$ and $u \sin k\theta$.
 - e.g. horizontal translation, k = 1.
- Liu's work shows there must exist an additional variation with k = 0 and a pair of variations with k = 1.

Fourier decomposition

• Look at each Fourier component (k value) individually.

Rotational symmetry

- In cylindrical coordinates (r, θ, z), the torus is determined by its cross-section Γ in the (r, z)-plane.
- A rotationally symmetric variation of the torus can be described by a variation u of Γ .
 - e.g. dilation, vertical translation
- More general variations can be written as linear combinations of *u* cos kθ and *u* sin kθ.
 - e.g. horizontal translation, k = 1.
- Liu's work shows there must exist an additional variation with k = 0 and a pair of variations with k = 1.

Fourier decomposition

- Look at each Fourier component (k value) individually.
- This lets us compute variations of the cross-section (1D) rather than variations of the surface (2D).

Y. Berchenko-Kogan (Penn State)

Index results (Y. B.-K. 2020)

Y. Berchenko-Kogan (Penn State)

Entropy and Index

More index results

• Proof that the eigenvalue that seems to be -1 is actually -1. (Y. B.-K. 2021).

▶ ∢ ∃ ▶

More index results

- Proof that the eigenvalue that seems to be -1 is actually -1. (Y. B.-K. 2021).
- Using the same techniques, index bounds, including upper bounds, on the index of rotationally symmetric tori. (Y. B.-K. 2021).

More index results

- Proof that the eigenvalue that seems to be -1 is actually -1. (Y. B.-K. 2021).
- Using the same techniques, index bounds, including upper bounds, on the index of rotationally symmetric tori. (Y. B.-K. 2021).
- Other work giving lower bounds: see (McGonagle, 2015; Liu, 2016; Aiex, 2019).

Section 4

References and Future Work

3

イロト イヨト イヨト イヨト

References

Yakov Berchenko-Kogan.

The entropy of the Angenent torus is approximately 1.85122. *Experimental Math.*, 2019.

Yakov Berchenko-Kogan.

Bounds on the index of rotationally symmetric self-shrinking tori. *Geom. Dedicata*, 2021.

Yakov Berchenko-Kogan.

Numerically computing the index of mean curvature flow self-shrinkers.

Submitted, 2020. https://arxiv.org/abs/2007.06094.

Future directions

• Compute the entropy and index of more self-shrinkers.

∃ ► < ∃ ►
- Compute the entropy and index of more self-shrinkers.
 - A starting point for leaving the rotationally symmetric setting: Take the union of two rotationally symmetric self-shrinkers, and desingularize as in (Nguyen, 2009–2014; Kapouleas, Kleene, Møller, 2018).

- Compute the entropy and index of more self-shrinkers.
 - A starting point for leaving the rotationally symmetric setting: Take the union of two rotationally symmetric self-shrinkers, and desingularize as in (Nguyen, 2009–2014; Kapouleas, Kleene, Møller, 2018).
 - Also, recent work on self-shrinkers with bi-rotational symmetry (McGrath, 2015; Drugan, Lee, Nguyen, 2018).

- Compute the entropy and index of more self-shrinkers.
 - A starting point for leaving the rotationally symmetric setting: Take the union of two rotationally symmetric self-shrinkers, and desingularize as in (Nguyen, 2009–2014; Kapouleas, Kleene, Møller, 2018).
 - Also, recent work on self-shrinkers with bi-rotational symmetry (McGrath, 2015; Drugan, Lee, Nguyen, 2018).
- Use elastic flow to compute self-shrinkers more effectively.

- Compute the entropy and index of more self-shrinkers.
 - A starting point for leaving the rotationally symmetric setting: Take the union of two rotationally symmetric self-shrinkers, and desingularize as in (Nguyen, 2009–2014; Kapouleas, Kleene, Møller, 2018).
 - Also, recent work on self-shrinkers with bi-rotational symmetry (McGrath, 2015; Drugan, Lee, Nguyen, 2018).
- Use elastic flow to compute self-shrinkers more effectively.
 - Unstable critical points of the *F*-functional become stable if we use an appropriate elastic energy instead. See Garcke and Nürnberg, 2020.

- Compute the entropy and index of more self-shrinkers.
 - A starting point for leaving the rotationally symmetric setting: Take the union of two rotationally symmetric self-shrinkers, and desingularize as in (Nguyen, 2009–2014; Kapouleas, Kleene, Møller, 2018).
 - Also, recent work on self-shrinkers with bi-rotational symmetry (McGrath, 2015; Drugan, Lee, Nguyen, 2018).
- Use elastic flow to compute self-shrinkers more effectively.
 - Unstable critical points of the *F*-functional become stable if we use an appropriate elastic energy instead. See Garcke and Nürnberg, 2020.
- Prove bounds on the accuracy of the entropy values and the eigenvalues.

- Compute the entropy and index of more self-shrinkers.
 - A starting point for leaving the rotationally symmetric setting: Take the union of two rotationally symmetric self-shrinkers, and desingularize as in (Nguyen, 2009–2014; Kapouleas, Kleene, Møller, 2018).
 - Also, recent work on self-shrinkers with bi-rotational symmetry (McGrath, 2015; Drugan, Lee, Nguyen, 2018).
- Use elastic flow to compute self-shrinkers more effectively.
 - Unstable critical points of the *F*-functional become stable if we use an appropriate elastic energy instead. See Garcke and Nürnberg, 2020.
- Prove bounds on the accuracy of the entropy values and the eigenvalues.
 - Starting point: numerical analysis theorems about convergence rates of approximations to minimal surfaces. See Dziuk and Hutchinson, 1999; Dierkes, Jenschke, Pozzi, 2018.

- Compute the entropy and index of more self-shrinkers.
 - A starting point for leaving the rotationally symmetric setting: Take the union of two rotationally symmetric self-shrinkers, and desingularize as in (Nguyen, 2009–2014; Kapouleas, Kleene, Møller, 2018).
 - Also, recent work on self-shrinkers with bi-rotational symmetry (McGrath, 2015; Drugan, Lee, Nguyen, 2018).
- Use elastic flow to compute self-shrinkers more effectively.
 - Unstable critical points of the *F*-functional become stable if we use an appropriate elastic energy instead. See Garcke and Nürnberg, 2020.
- Prove bounds on the accuracy of the entropy values and the eigenvalues.
 - Starting point: numerical analysis theorems about convergence rates of approximations to minimal surfaces. See Dziuk and Hutchinson, 1999; Dierkes, Jenschke, Pozzi, 2018.
 - We have a weight (the *F*-functional) and we need not just convergence rates but actual bounds, but the same techniques apply (fundamentally, Taylor's theorem).

Thank you

Thank you

æ

イロト イヨト イヨト イヨト