Distance in the Ellipticity Graph

Yakov Berchenko-Kogan
California Institute of Technology

9 January, 2011

Introduction

Motivation

- For a free group F, we wish to gain insight into the group of automorphisms Aut (F) by studying spaces on which Aut (F) acts.

Introduction

Motivation

- For a free group F, we wish to gain insight into the group of automorphisms Aut (F) by studying spaces on which $\operatorname{Aut}(F)$ acts.
- One such space is the ellipticity graph $\mathcal{Z}(F)$, defined by I. Kapovich and M. Lustig in a 2009 paper, which contains free splittings and conjugacy classes of F.

Introduction

Motivation

- For a free group F, we wish to gain insight into the group of automorphisms Aut (F) by studying spaces on which $\operatorname{Aut}(F)$ acts.
- One such space is the ellipticity graph $\mathcal{Z}(F)$, defined by I. Kapovich and M. Lustig in a 2009 paper, which contains free splittings and conjugacy classes of F.

Results

I created algorithms for determing when two vertices of $\mathcal{Z}(F)$ are adjacent to a common vertex.

Preliminaries

Definition

A free splitting $A * B$ is a decomposition of F into two subgroups A and B that generate F but do not have relations between them.

Example

If $F=\langle a, b, c\rangle$, then the following are free splittings of F :

- $\langle a\rangle *\langle b, c\rangle$
- $\left\langle a b^{2}\right\rangle *\left\langle a b^{2} a b^{3}, c\right\rangle$

Preliminaries

Definition

A free splitting $A * B$ is a decomposition of F into two subgroups A and B that generate F but do not have relations between them.

Example

If $F=\langle a, b, c\rangle$, then the following are free splittings of F :

- $\langle a\rangle *\langle b, c\rangle$
- $\left\langle a b^{2}\right\rangle *\left\langle a b^{2} a b^{3}, c\right\rangle$

Definition

A cyclic word is a conjugacy class of the free group F.

Preliminaries

Definition

A free splitting $A * B$ is a decomposition of F into two subgroups A and B that generate F but do not have relations between them.

Example

If $F=\langle a, b, c\rangle$, then the following are free splittings of F :

- $\langle a\rangle *\langle b, c\rangle$
- $\left\langle a b^{2}\right\rangle *\left\langle a b^{2} a b^{3}, c\right\rangle$

Definition

A cyclic word is a conjugacy class of the free group F.

Definition

A cyclic word is elliptic to a free splitting $A * B$ if it has a representative in either A or B.

The Ellipticity Graph

Definition

For a free group F, the ellipticity graph $\mathcal{Z}(F)$ is bipartite graph, with the following vertex classes.

The Ellipticity Graph

Definition

For a free group F, the ellipticity graph $\mathcal{Z}(F)$ is bipartite graph, with the following vertex classes.

- Notrivial cyclic words of F.
- Nontrivial free splittings $A * B$ of F,

The Ellipticity Graph

Definition

For a free group F, the ellipticity graph $\mathcal{Z}(F)$ is bipartite graph, with the following vertex classes.

- Notrivial cyclic words of F.
- Nontrivial free splittings $A * B$ of F,

A cyclic word w is adjacent to a free splitting $A * B$ if w is elliptic to $A * B$.

The Ellipticity Graph

Definition

For a free group F, the ellipticity graph $\mathcal{Z}(F)$ is bipartite graph, with the following vertex classes.

- Notrivial cyclic words of F.
- Nontrivial free splittings $A * B$ of F, up to the equivalence relation where $A * B$ is equivalent to $\left(x A x^{-1}\right) *\left(x B x^{-1}\right)$ and to $\left(x B x^{-1}\right) *\left(x A x^{-1}\right)$ for all $x \in F$.
A cyclic word w is adjacent to a free splitting $A * B$ if w is elliptic to $A * B$.

The Ellipticity Graph

Definition

For a free group F, the ellipticity graph $\mathcal{Z}(F)$ is bipartite graph, with the following vertex classes.

- Notrivial cyclic words of F.
- Nontrivial free splittings $A * B$ of F, up to the equivalence relation where $A * B$ is equivalent to $\left(x A x^{-1}\right) *\left(x B x^{-1}\right)$ and to $\left(x B x^{-1}\right) *\left(x A x^{-1}\right)$ for all $x \in F$.
A cyclic word w is adjacent to a free splitting $A * B$ if w is elliptic to $A * B$.

Remark

The inner (conjugation) automorphisms of F fix $\mathcal{Z}(F)$, so $\operatorname{Out}(F)$, the group of outer automorphisms of F, acts on $\mathcal{Z}(F)$.

Distance Two in $\mathcal{Z}(F)$

Questions

- Given two free splittings $A * B$ and $C * D$ of F, is there a nontrivial cyclic word of F elliptic to both?

Distance Two in $\mathcal{Z}(F)$

Questions

- Given two free splittings $A * B$ and $C * D$ of F, is there a nontrivial cyclic word of F elliptic to both?
- Given two cyclic words v and w of F, is there a nontrivial free splitting of F to which they are both elliptic?

Distance Two in $\mathcal{Z}(F)$

Questions

- Given two free splittings $A * B$ and $C * D$ of F, is there a nontrivial cyclic word of F elliptic to both?
- Given two cyclic words v and w of F, is there a nontrivial free splitting of F to which they are both elliptic?

Distance Two in $\mathcal{Z}(F)$

Questions

- Given two free splittings $A * B$ and $C * D$ of F, is there a nontrivial cyclic word of F elliptic to both?
- Given two cyclic words v and w of F, is there a nontrivial free splitting of F to which they are both elliptic?

Two free splittings with common elliptic word

Given finitely generated subgroups H and K of F, is there a notrivial conjugacy class that intersects both?

Stallings Folding

$$
H=\left\langle a b a^{-3}, a^{2} b a^{-2}, a^{3} b a^{-1}\right\rangle<F=\langle a, b\rangle
$$

Stallings Folding

$$
H=\left\langle a b a^{-3}, a^{2} b a^{-2}, a^{3} b a^{-1}\right\rangle<F=\langle a, b\rangle
$$

Stallings Folding

$$
H=\left\langle a b a^{-3}, a^{2} b a^{-2}, a^{3} b a^{-1}\right\rangle<F=\langle a, b\rangle
$$

Stallings Folding

$$
H=\left\langle a b a^{-3}, a^{2} b a^{-2}, a^{3} b a^{-1}\right\rangle<F=\langle a, b\rangle
$$

Stallings Folding

$$
H=\left\langle a b a^{-3}, a^{2} b a^{-2}, a^{3} b a^{-1}\right\rangle<F=\langle a, b\rangle
$$

Stallings Folding

$$
H=\left\langle a b a^{-3}, a^{2} b a^{-2}, a^{3} b a^{-1}\right\rangle<F=\langle a, b\rangle
$$

Stallings Folding

Stallings Folding

Stallings Folding

Stallings Folding

Theorem (Stallings)

A word is in the subgroup if and only if it is the label of a path from the base vertex to the base vertex.

Stallings Folding

Theorem (Stallings)

A word is in the subgroup if and only if it is the label of a path from the base vertex to the base vertex.

Example

$a b^{4} a^{-1}$ is in the subgroup, but $a b a^{-1}$ and $a b a b a^{-1}$ are not.

The product graph

Free splittings with common elliptic word

Theorem (YBK)

Given two subgroups H and K of a free group F, there is a nontrivial conjugacy class that intersects both of them if and only if the product graph of the Stallings graphs of H and K has a cycle.

Free splittings with common elliptic word

Theorem (YBK)

Given two subgroups H and K of a free group F, there is a nontrivial conjugacy class that intersects both of them if and only if the product graph of the Stallings graphs of H and K has a cycle.

Two free splittings

Given $A * B$ and $C * D$, we test if there is a nontrivial cyclic word elliptic to both by checking the four pairs $(A, C),(A, D),(B, C)$, and (B, D) for having a nontrivial conjugacy class that intersects both.

Two cyclic words elliptic to a common free splitting

Question

Given two cyclic words v and w of F, is there a nontrivial free splitting of F to which they are both elliptic?

Two cyclic words elliptic to a common free splitting

Question

Given two cyclic words v and w of F, is there a nontrivial free splitting of F to which they are both elliptic?

Whitehead Automorphisms

For a free group F generated by a finite set X, the Whitehead automorphisms are a finite set of basic automorphisms that generate all of Aut (F). Their original use was in the Whitehead algorithm to test if cyclic words are in the same orbit of $\operatorname{Out}(F)$.

Two cyclic words elliptic to a common free splitting

Testing for a common free splitting (YBK)

- Look for a Whitehead automorphism that, when applied to (v, w), creates a pair with smaller total length.

Two cyclic words elliptic to a common free splitting

Testing for a common free splitting (YBK)

- Look for a Whitehead automorphism that, when applied to (v, w), creates a pair with smaller total length.
- If such a Whitehead automorphism exists, apply it to (v, w), and repeat with the new pair.

Two cyclic words elliptic to a common free splitting

Testing for a common free splitting (YBK)

- Look for a Whitehead automorphism that, when applied to (v, w), creates a pair with smaller total length.
- If such a Whitehead automorphism exists, apply it to (v, w), and repeat with the new pair. If none exist, call the resulting pair $\left(v^{\prime}, w^{\prime}\right)$.

Two cyclic words elliptic to a common free splitting

Testing for a common free splitting (YBK)

- Look for a Whitehead automorphism that, when applied to (v, w), creates a pair with smaller total length.
- If such a Whitehead automorphism exists, apply it to (v, w), and repeat with the new pair. If none exist, call the resulting pair $\left(v^{\prime}, w^{\prime}\right)$.
- Define $\Lambda\left(v^{\prime}\right)=\left\{x \in X \mid x\right.$ or x^{-1} appears in $\left.v^{\prime}\right\}$, similarly for $\Lambda\left(w^{\prime}\right)$.

Two cyclic words elliptic to a common free splitting

Testing for a common free splitting (YBK)

- Look for a Whitehead automorphism that, when applied to (v, w), creates a pair with smaller total length.
- If such a Whitehead automorphism exists, apply it to (v, w), and repeat with the new pair. If none exist, call the resulting pair $\left(v^{\prime}, w^{\prime}\right)$.
- Define $\Lambda\left(v^{\prime}\right)=\left\{x \in X \mid x\right.$ or x^{-1} appears in $\left.v^{\prime}\right\}$, similarly for $\Lambda\left(w^{\prime}\right)$.

Theorem (YBK)

The words v and w are elliptic to some splitting $A * B$ if and only if either

- $\Lambda\left(v^{\prime}\right) \cup \Lambda\left(w^{\prime}\right) \neq X$, or
- $\Lambda\left(v^{\prime}\right)$ and $\Lambda\left(w^{\prime}\right)$ are disjoint.

Two cyclic words elliptic to a common free splitting

Testing for a common free splitting (YBK)

- Look for a Whitehead automorphism that, when applied to (v, w), creates a pair with smaller total length.
- If such a Whitehead automorphism exists, apply it to (v, w), and repeat with the new pair. If none exist, call the resulting pair $\left(v^{\prime}, w^{\prime}\right)$.
- Define $\Lambda\left(v^{\prime}\right)=\left\{x \in X \mid x\right.$ or x^{-1} appears in $\left.v^{\prime}\right\}$, similarly for $\Lambda\left(w^{\prime}\right)$.

Theorem (YBK)

The words v and w are elliptic to some splitting $A * B$ if and only if either

- $\Lambda\left(v^{\prime}\right) \cup \Lambda\left(w^{\prime}\right) \neq X$, or
- $\Lambda\left(v^{\prime}\right)$ and $\Lambda\left(w^{\prime}\right)$ are disjoint.

Remark

In the first case, then v and w have representatives in the same factor of the free splitting. In the second case, they are in different factors.

Thank You

Acknowledgements

I'd like to thank Ilya Kapovich University and Kim Whittlesey at the University of Illinois at Urbana-Champaign for introducing me to this question, and I'd like to thank Matthew Day for mentoring me further in this subject at Caltech.

References

國 I. Kapovich and A. Myasnikov, Stallings foldings and subgroups of free groups, Journal of Algebra 248 (2002), no. 2, 608-668.

目 R. Lyndon and E. Schupp, Combinatorial group theory, Springer, 1977.

